Info about the RSA chosen ciphertext attack

0.1 Background

For background, see https://arxiv.org/abs/1804.03367. Basically, Homework 1.4 and QQ
Browser have the same basic structure to how a client encrypts a message for the server: generate a random
AES session key (128 bits for QQ Browser, 256 for the homework), use that as plaintext for an RSA scheme
and encrypt it with the server’s public key, then send that RSA ciphertext followed by the AES encryption
(using that AES session key) of the message over the wire. The RSA key is 1024 bits in QQ Browser and
2048 bits for Homework 1.3.

0.2 How textbook RSA works

RSA is an asymmetric cryptography algorithm, also called a public key algorithm. This means that there
is both a public key, which the entire world can know for all we care, and a private key that the decrypting
party can keep to themselves and never share with anyone (not even the parties sending them encrypted
messages). This is in contrast to a symmetric algorithm, like AES, where both the sender and receiver need
a copy of the exact same key that is used for encryption and decryption. Here we’ll repeat the version of
RSA encryption that you’ll see on Wikipedia or in any textbook, but instead of the usual suspects (Alice and
Bob) we’ll use QQ Browser clients and the QQ server hosted by Tencent to make the context more clear.

The problem we (putting ourselves for the moment in the heads of QQ Browser’s developers) want to
solve is that we want hundreds of millions of clients to be able to each send many messages a day to a
server, but we don’t want any of those clients (who might be NSA spies or bored graduate students) to
be able to decrypt messages sent by other clients if they’re somehow able to record them off the network.
Baidu Browser and UC Browser failed horribly at this, because the secret key their servers used to decrypt
messages was also hard-coded into the software for every client in the world, and every client used the same
key.

One solution to this problem would be for every client to generate a random key to use for every message,
and then somehow send that random key to the server. But how to send this key? You can’t send it in
plaintext, and you can’t encrypt it with another secret AES key that is hardcoded into every client and the
server because that just gets you back to your original problem. The clients need some way to encrypt
messages to the server in a way that even they themselves can’t decrypt.

RSA, an algorithm published by Rivest, Shamir, and Adleman in 1978, solves this problem. This is the
technique that QQ Browser’s developers used, pulling the algorithm right out of a textbook (and thus ignor-
ing about four decades of research in cryptography). Before releasing the client software, the developers
simply created an RSA key pair where the public key can be hardcoded into every client and the private
key is given only to the server. Any message encrypted with the public key can only be decrypted with the
private key, and it’s computationally infeasible for anyone with the public key to guess what the private key
is. Thus, the NSA can download the QQ Browser client and extract the public key via reverse engineering,
but it won’t help them decrypt the communications that other clients are having with the server. In theory.

So, let’s take a look at what a textbook version of RSA looks like ala QQ Browser. First, we have to
generate a key pair using the following steps:

1. Choose two large primes, p and ¢

2. Multiply them together to get n = pq



3. Calculate the totient, which happens to be (p — 1)(¢ — 1)

4. Using the totient and the Extended Euclidean Algorithm, find a matching e and d such that ed =
1(mod n)

e is coprime to the totient and d is e’s multiplicative inverse modulo the totient. Essentially, e and d are
a carefully chosen pair that make the encryption (using €) and decryption (using d) work.

The encryption key, e, and the product of the two primes, n, can be made known to the whole world.
Based on the underlying assumption that factoring large numbers is very hard for classical computers to do,
telling the whole world the value of n doesn’t reveal to them what p and ¢ were, so they can’t compute what
d is even if they know e because they don’t know the totient.

So, QQ Browser does exactly that, they hardcode e and n into the client software that the whole world
can see, and d is kept only on the server (the server will also need n, but it’s not part of the secret). So, we
can say that the tuple (e, n) is the public key and the tuple (d, n) is the matching private key.

To use RSA public key cryptography to send their randomly chosen AES key to the server (a secret that
they don’t want anybody but the server to know), a client encrypts it using the public key. So if m, or the
message, is the 128-bit AES session key that a client wants to use to encrypt things to send to the server,
they send the server m by encrypting it like this:

¢ =mf(mod n)

The funny-looking equals sign with three lines means the two numbers are congruent, but “equals”
is good enough to understand the computation. The “mod” simply means you take the remainder after
dividing by n. All of the computations so far for generating the key, and encrypting, as well as the following
computation for decrypting, are easy for computers to do with very large numbers because of various number
theory tricks.

So c is the message that the client sends to the server, which is the encrypted copy of the 128-bit
ephemeral AES key. The server can decrypt it using the private key:

m = ¢?(mod n)

This is because in RSA ed = 1(mod n) by definition, so when you apply both the public and private key
to something you are basically raising it to the power of 1 and getting back what you started with:

(m®€)%(mod n)
m®(mod n)
m!(mod n)
m(mod n)

3333

The beauty of it is that someone who knows the encryption key e can’t possibly decrypt the message in
any practical way using e. You need the secret decryption key d to decrypt it, even though it was encrypted
with e. This asymmetric property of RSA is why we can give the same encryption key to every client in the
world and even spare them the labor of reverse engineering the code to find that key by publicizing it, but
still maintain the property that only the server can decrypt the messages that the clients encrypt. In theory.

As it turns out, there are two little facts about textbook RSA that have to be dealt with in practical
implementations of it. One is that RSA is malleable, meaning that we can change the plaintext in meaningful
ways (without knowing what the plaintext is) by performing operations on the ciphertext. For example, let’s
say we want to multiply the secret message m (which we don’t know) by 2. We can calculate a new
ciphertext based on the encrypted ciphertext c that corresponds to m like this:



d = ¢ x2°= (modn)

We know c and e (recall that e is the public key). Now we have an encrypted ciphertext for 2m:
d=cx2°=mf x2°=(2m)¢(mod n)

The new ciphertext ¢’ is the same as if we had encrypted 2m.

The second fact that has to be dealt with in practice when implementing RSA is that information can
leak if the server’s observable behavior changes depending on the value of m that it decrypts. For example,
a server might abort with an error message if the plaintext that it decrypts is greater than 2!?8 — 1, or the
maximum value of a 128-bit AES key. If we can send ¢’ to the server after we recorded ¢ from another
client, we just learned whether 2m is greater than 2'28 — 1, which gives us the most significant bit of the
original client’s secret m that they encrypted into c. In other words, we just learned a bit of the AES key.

For these kinds of reasons it is not advisable to pick up an average crypto textbook, flip to the chapter
about RSA, and start writing code. Techniques such as Optimal Assymetric Encryption Padding (OAEP) [?]
and many best practices about how to handle error cases have to be implemented to avoid problems like those
above. For a good book about how you’re supposed to really engineer cryptography, see Cryptography
Engineering [?].

0.3 QQ Browser’s “fixed” cryptography implementation

So now let’s look at how QQ Browser version 6.5.0.2170, which was released in response to earlier findings
by the Citizen Lab about the weak 128-bit RSA key, handles client encryption for messages sent to the
server.

The major change was that the RSA implementation (and therefore also the client’s public key and
server’s private key) were switched to a 1024-bit scheme. This puts factoring n and calculating the private
key (based on reverse engineering the client binary) outside the resources of a graduate student. But, as
mentioned before, the attack we’ll carry out would work just as well for even a 4096-bit or larger RSA key.

QQ Browser’s implementation of 1024-bit RSA was still textbook RSA. Basically, if a client wants to
send an encrypted message to the server, it would first generate a random 128-bit AES key to be used as the
session key. Then it would encrypt that 128-bit message using the 1024-bit RSA public key. After sending
the RSA ciphtertext to the server, the client would also encrypt some data using that AES session key and
also send that to the server. The server would decrypt the RSA ciphertext to recover the 128-bit AES session
key, use that to decrypt the data from the client, and then send its own response to the client encrypted with
the 128-bit session key.

Our attack model is simple: The NSA, or anyone with the ability to record encrypted messages that any
client sends to the server, wants to decrypt those messages that they recorded. For example, the attacker
could be sitting at the network gateway of a particular target whose data they’d like to record and decrypt.
We know from the Snowden revelations that the NSA was doing exactly that for UC Browser [?].

0.4 The attack

Without the private key, d, that only the server has, we can’t decrypt any of the messages, c, that clients
encrypt and send to the server. And without a quantum computer there’s not really a practical way to find
out what d is. In fact, even in the attack that I’m about to describe we never find out what d is. But, if
we can find a way to trick the server into decrypting c or ciphertexts related to c and then leaking to us
bits of information about m or plaintexts related to m, then we don’t need the private key. We’re like a
puppetmaster, pulling the strings of the server to get it to do things for us.



As happens in virtually any hack, we are going to program somebody else’s code, based on our malicious
inputs, to do things for us. Since the server will have access to decrypted plaintexts, we want to program
the server to tell us something about those plaintexts. Using the malleability of RSA, it’s possible for us
to create plaintexts that are related to the original plaintext from the client and then learn something about
our created plaintexts (which will tell us something about the original plaintext if we choose the related
plaintexts carefully). Specifically, we can record a ciphertext that any client sends to the server and then
double the plaintext that that ciphertext decrypts to, without really even knowing what that plaintext was.
Recall that multiplying the ciphertext by 2¢ doubles the plaintext. This is possible because QQ Browser uses
the textbook version of RSA.

Suppose the client whose communications we want to decrypt encrypts the following 128-bit AES key
with 1024-bit RSA and sends it to the server:

1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011

The server will decrypt the encrypted RSA ciphertext, c, that it receives into m. Since m is a 1024-bit
number, the server is going to chop off the last 128-bits of m to use as the AES key. So the server will
decrypt the following, where red are bits it will throw away and green are bits it will use as the AES key for
encrypting its communications back to the client (and also for decrypting communications it receives from
the client):

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011

This shows what the server sees as the RSA plaintext afer it decrypts the ciphertext we sent it,
which we are trying to trick the server into leaking bits of to us. So, we as the attacker have recorded c by
eavesdropping on the client and server’s communications over the Internet. But without the private key, d,
we don’t know what m (the green part, which is the AES key to decrypt the rest of the message) is. Let’s
explore what happens if we open our own connection to the server, and as our ciphertext we send ¢ x 2°.
The server will decrypt that into the following plaintext:

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000001
0110000100101100111011110111011001000101111110011101010111100110
0000000111001001011110010010101001000111011010100001011101110110

The above happens to be 2m. The server will then throw out the red bits (which includes a bit from
the original AES key) and then use the green part for AES encryption and decryption with us. So far, this
doesn’t help us that much, since we’d still need to brute force 2'27 possibilities. Since m is a multiple of
2, we know that the last bit of the AES key (in green) is a zero since all even binary numbers end in 0, but
there are still 127 bits we’d need to guess.

So, we know how to double plaintexts by manipulating ciphertexts. What if we double it more than
once? What if we do it 16 times, by sending ¢ x 2'%¢ as out ciphertext. When we multiplied the plaintext
by 2 above, we effectively bit shifted the AES key by 1. Now we’re multiplying the plaintext by 2'6, which
is the equivalent of bit-shifting to the left 16 times:

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000001011000010010110
0111011110111011001000101111110011101010111100110000000011100100
1011110010010101001000111011010100001011101110110000000000000000

Now there are 128 — 16 = 112 bits in the AES key that we don’t know for sure are zeroes, so 2''2
possibilities that we’d need to brute force. You may be wondering at this point, how would we brute force
the AES key? It’s simple, the server will encrypt and decrypt with that key, so we just try all the possibilities
until we decrypt a valid server response. To try a key we act as a new client and encrypt and decrypt with
that key to see if the server can understand us and vice versa. But 2112 is still too many possibilities, we’d
have to connect to the server to try a key 5 decillion 192 nonillion 296 octillion 858 septillion 534 sextillion
827 quintillion 628 quadrillion 530 trillion 496 billion 329 million 220 thousand and 96 times. So, let’s
instead send as our ciphertext ¢ x 2'27¢, then the server will decrypt the following plaintext, and use the
green part as the AES key (again, throwing away the red part):



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0101100001001011001110111101110110010001011111100111010101111001
1000000001110010010111100100101010010001110110101000010111011101
1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

Now, we’ve finally figured out step one of our attack. By sending ¢ x 2!27¢ as our ciphertext, we’ve
forced the server to encrypt what it sends back to us with one of two AES keys, either...

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

...0rL..

1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

Here’s the insight: Which of those two keys the server encrypted with depends on the AES key chosen
by the original client, specifically the most significant bit of our related plaintext is going to be the least
significant bit of the original plaintext, m. So we just learned one bit of the original client’s AES key! All
we have to do is try both possibilities for encrypting a test message to the server and decrypting the server’s
response. That’s step 1 out of 128 in cracking the AES session key and decrypting what that client sent to
the server!

So, what’s step 2?7 Well, we’ll simply shift left by 126 instead of 127, by sending as our ciphertext
c x 2126¢_Then the server will decrypt the following for the session AES key (again, the red part is thrown
out):



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0010110000100101100111011110111011001000101111110011101010111100
1100000000111001001011110010010101001000111011010100001011101110
1100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

So now there are two bits in our AES key with the server that we don’t know for sure are zeroes, but
we don’t want to try all four possibilities because that’s not going to be efficient going forward. We already
know the bit in blue from step 1, so really there are only two possibilities of keys to try: Either...

0100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

...0rL..

1100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

So then, for step 3, we would send ¢ x 2'25¢ as our ciphertext, and the server would decrypt:

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0001011000010010110011101111011101100100010111111001110101011110
0110000000011100100101111001001010100100011101101010000101110111
0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

Then the two possibilities we have to try for the AES key are either:



0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

...0rL..

1110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

By step 128, we are sending c as our plaintext, but since we’ve inferred 127 bits by then (in steps 1
through 127) there are only two possibilities we need to try. The server will be using the same AES key as
it used with the original client:

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011

Then we can try two keys, either:

0011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011

...Or...

1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011

The second possibility will be the one that decrypts the server response correctly, so now we know the
original client’s AES session key and can decrypt their communications with the server for that session.

To recap, let’s go over a hypothetical attack scenario. Suppose the Thai equivalent of the NSA wants
to spy on a reporter in Thailand who uses QQ Browser on a day-to-day basis. For any message between
that user’s QQ Browser client and the QQ Browser server that collects the records of their wherabouts, what
websites they go to, efc., the Thai government can record it at the country’s Internet borders. Then they can
decrypt the message by making 128 of their own connections to the QQ Browser server, each time learning
one bit of the ephemeral AES key that was used for the original message. Once they know that 128-bit AES
key, they can simply use it to decrypt the message.



0.5 Putting it all together

This type of attack has plagued SSL/TLS, the protocols that web browsers and web servers use for encryption
on the Internet, for years (see, e.g., [?, ?]). Many other protocols have fallen prey to Bleichenbacher-style
attacks (see, e.g., [?, 7, ?]). QQ Browser’s use of textbook RSA made the example attack in this chapter easy
to understand, but much more subtle bugs in well-implemented crypto implementations can be exploited
using more sophisticated methods. These attacks are particularly insidious because the server’s only fault is
interacting with clients in seemingly normal ways, such as using the key the client chose to use or sending
error messages when decryption doesn’t work out. The attacker is taking normal things that normal servers
do, and manipulating them into a carefully sequenced saraband where the strings the attacker is pulling
are the strings that have always been there by design, the same strings that all clients pull, but the actions
the “puppet” (i.e., the server) are taking are extremely malicious and not at all what the server’s designers
intended.



