Rowhammer...

Food for thought

Information Is inherently physical

Information only has meaning in that it is
subject to interpretation

Management information stored in-band with
regular information

Programming the weird machine

Page Table for A gy

Running Valid El{]}fsmal T
¥ | : emory
Process A Frame# Bit Frame Process A
0 4 1 Number page 0
1 - 0 0 | page 6 of B _ page 1
CPU 2 5 1 1 | page 3 of A PIGCESSGB page 2
3 1 1 2 | page Sof A page page 3
4 - 0 3 | page 5of B page ,l} page 4
3) 1 4 | pageOof A ik page 5
: i & page 3 2
6 - \ 0 5 | page 20f A = page 6
6 | page 4 of B Dot 4
= page 5
page# oOffset ame# offset page 6
5 50 2 50 w
Logical Addr. Physical Addr.

Plagiarized from http://www.cs.uni.edu/~fienup/cs142f05/lectures/lec20_OS_virtual_memory.HTM

il \]\\

CAS

Plagiarized from:
https://en.wikipedia.org/wiki/Row_hammer#/media/File:Row_hammer.svg

Step #1: Find aggressor and victim

* Allocate a large chunk of memory, like 1GB

* Aggressors X and Y must be different rows in the same bank
- DRAM row is typically >4K and <2MB
- Rows in a bank activated in lockstep

* Pick X and Y as random virtual addresses
— Check if hammering X and Y flips a bit in Z
- If you find that Z (have to check the whole block), that’s your victim

* Hope that you can flip, e.g., the 12t bit in a 64-bit word rather
than, e.g., the 51st

 munmap() all but these three pages (two aggressors, one victim)

Step #2: Randomize physical
memory

* Why? So a small change in where a PTE
points will not go from one data page to
another.

* Allocate a huge chunk of memory with mmap()
with MAP_POPULATE

* Throughout the exploit, release a random 4KB
at a time with madvise + MADV_DONTNEED

Step #3: Spray physical memory
with page tables

 Keep mmap()ing a file with markers in it, 2MB
aligned

- Why 2MB? One page table has 512 entries times
4K = 2MB
- Try to have more page tables in memory than data

 When victim is released it’s likely to be a page table

* When bit is flipped new value is likely to point to a page
table

Step #4: Hammer time

* Check if bit flip changed a mapping in the page
table to point to another page table

- Only have to check the Nth page within each 2MB
chunk

 If it's not pointing to the file, then it’s likely
pointing to another page table. Which one?
- Can change it arbitrarily, then scan our virtual

address space to fine another page that now
doesn’t point to the file

Step #5: Exploit

* mmap() a setuid binary, like ping

- Kernel won't set write bit in your PTE for ping’s
code section

- Modify your writable page table to give yourself
write permissions to the physical page where ping’s
code section gets cached

- Execute it as root

MELTDOWN...

Reorder buffer
From instruction unit

i
z HeQ # ¥ Data
Instruction 1
queue
FP registers
Load/store
operations
Y : . Operand
Address unit Floating-point buses
operations i
Load buffers T '
Y

Operation bus

Store l, | I o
address 2 Reservation 1
Store - 1 stations fr—
data 4 r Address
Memory unit rE =
';fad Common data bus (CDB)
ata

Plagiarized from:
https://passlab.github.io/CSCE513/notes/lecturel8 ILP_SuperscalarAdvancedARMIintel.pdf

Overly simplified MELTDOWN

Int a]256 * cachelinesize] // cache aligned
char *p = &SomethinglCantReadInKernel
INt X = a[*p * cachelinesize]

* Side channel: whatever gets cached
speculatively reveals *p

What does this mean?

e Supervisor bit Is useless, because
microarchitectural state can be visibly changed
based on speculative execution that ignores the

supervisor bit

* Can no longer put the kernel at the top of the
virtual address space of every process

* https://googleprojectzero.blogspot.com/2015/03
[exploiting-dram-rowhammer-bug-to-gain.nhtml

* https://www.usenix.org/conference/usenixsecuri
ty18/presentation/lipp

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

