
  

Rowhammer…



  

Food for thought

● Information is inherently physical
● Information only has meaning in that it is 

subject to interpretation
● Management information stored in-band with 

regular information
● Programming the weird machine



  Plagiarized from http://www.cs.uni.edu/~fienup/cs142f05/lectures/lec20_OS_virtual_memory.HTM 



  
Plagiarized from: 
https://en.wikipedia.org/wiki/Row_hammer#/media/File:Row_hammer.svg



  

Step #1: Find aggressor and victim

● Allocate a large chunk of memory, like 1GB
● Aggressors X and Y must be different rows in the same bank

– DRAM row is typically >4K and <2MB
– Rows in a bank activated in lockstep

● Pick X and Y as random virtual addresses
– Check if hammering X and Y flips a bit in Z
– If you find that Z (have to check the whole block), that’s your victim

● Hope that you can flip, e.g., the 12th bit in a 64-bit word rather 
than, e.g., the 51st

● munmap() all but these three pages (two aggressors, one victim)



  

Step #2: Randomize physical 
memory

● Why?  So a small change in where a PTE 
points will not go from one data page to 
another.

● Allocate a huge chunk of memory with mmap() 
with MAP_POPULATE

● Throughout the exploit, release a random 4KB 
at a time with madvise + MADV_DONTNEED



  

Step #3: Spray physical memory 
with page tables

● Keep mmap()ing a file with markers in it, 2MB 
aligned
– Why 2MB?  One page table has 512 entries times 

4K = 2MB
– Try to have more page tables in memory than data

● When victim is released it’s likely to be a page table
● When bit is flipped new value is likely to point to a page 

table



  

Step #4: Hammer time

● Check if bit flip changed a mapping in the page 
table to point to another page table
– Only have to check the Nth page within each 2MB 

chunk

● If it’s not pointing to the file, then it’s likely 
pointing to another page table.  Which one?
– Can change it arbitrarily, then scan our virtual 

address space to fine another page that now 
doesn’t point to the file



  

Step #5: Exploit

● mmap() a setuid binary, like ping
– Kernel won’t set write bit in your PTE for ping’s 

code section
– Modify your writable page table to give yourself 

write permissions to the physical page where ping’s 
code section gets cached

– Execute it as root



  

MELTDOWN...



  Plagiarized from: 
https://passlab.github.io/CSCE513/notes/lecture18_ILP_SuperscalarAdvancedARMIntel.pdf



  

Overly simplified MELTDOWN

int a[256 * cachelinesize] // cache aligned

char *p = &SomethingICantReadInKernel

int x = a[*p * cachelinesize]

● Side channel: whatever gets cached 
speculatively reveals *p



  

What does this mean?

● Supervisor bit is useless, because 
microarchitectural state can be visibly changed 
based on speculative execution that ignores the 
supervisor bit

● Can no longer put the kernel at the top of the 
virtual address space of every process



  

● https://googleprojectzero.blogspot.com/2015/03
/exploiting-dram-rowhammer-bug-to-gain.html

● https://www.usenix.org/conference/usenixsecuri
ty18/presentation/lipp

●

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

