
CSE 468 Fall 2023

jedimaestro@asu.edu

Why are you paying the extra money and investment of time to get a B.S. from ASU instead of just staying home and reading Wikipedia? Or watching free lectures from MIT professor?

My thoughts...

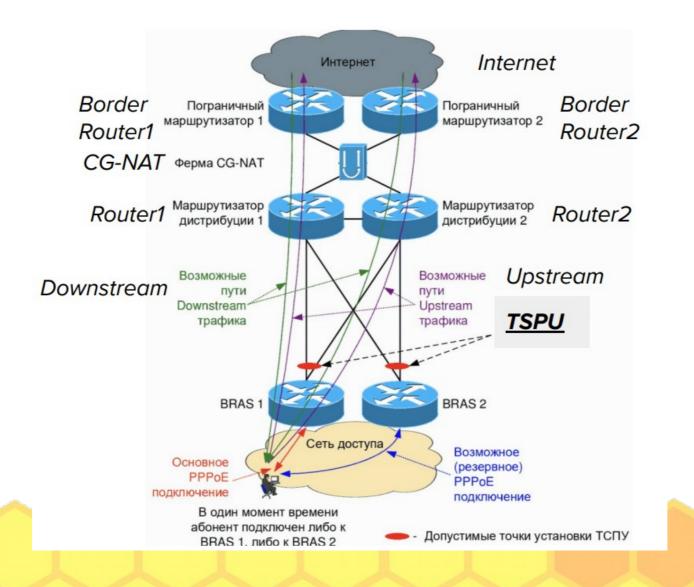
- Prof. Gary Gear (ERAU): A bachelor's degree is a "license to learn"
- ASU is a research university
 - Surprising amount of experience in the room
- We're here *together* in the classroom for a reason

Outline

- A little about me and the course
- Syllabus
- Rainbows

"For the mind does not require filling like a bottle, but rather, like wood, it only requires kindling to create in it an impulse to think independently and an ardent desire for the truth."

-Plutarch



A little about me...

- Associate Professor in SCAI, joint appointment in Biodesign Center for Biocomputing, Security, and Society
- Started at ASU in 2020, was at the Univ. of New Mexico for 13 years before that
- Research is about Internet freedom

Measuring censorship

VPN security (and privacy and availability)

Algorithm 1 Opcode Fingerprinting LogicRequire: $N \ge 0$ $OCSet \leftarrow \{\}, CR \leftarrow Opcode[0], SR \leftarrow Opcode[1]$ $i \leftarrow 2$ while $i \ne N$ & i < |Opcode| doif $Opcode[i] \in CR, SR$ & $|OCSet| \ge 4$ thenReturn Falseend ifOCSet += Opcode[i] $i \leftarrow i+1$ end whileReturn i == N & $4 \le |OCSet| \le 10$ #At least 4 different Opcodes needed to complete hand-shake. In total 10 Opcodes defined by the protocol.

+int buffer_reverse (struct buffer *buf) {
+ int len = BLEN(buf);
+ if (len > 2) {
+ int i;
+ uint8_t *b_start = BPTR (buf) + 1;
+ uint8_t *b_end = BPTR (buf) + (len - 1);
.....

Figure 4: XOR-Patch that leaves first byte un-reversed

Surveillance and targeted attacks

Let C be the RSA encryption of 128-bit AES key k with RSA public key (n, e). Thus, we have

 $C \equiv k^e \pmod{n}$

Now let C_b be the RSA encryption of the AES key

 $k_b = 2^b k$

i.e., k bitshifted to the left by b bits. Thus, we have

 $C_b \equiv k_b^{\ e} \pmod{n}$

We can compute C_b from only C and the public key, as

$$C_b \equiv C(2^{be} \mod n) \pmod{n}$$
$$\equiv (k^e \mod n)(2^{be} \mod n) \pmod{n}$$
$$\equiv k^e 2^{be} \pmod{n}$$
$$\equiv (2^b k)^e \pmod{n}$$
$$\equiv k_b^e \pmod{n}$$

Interested to know more?

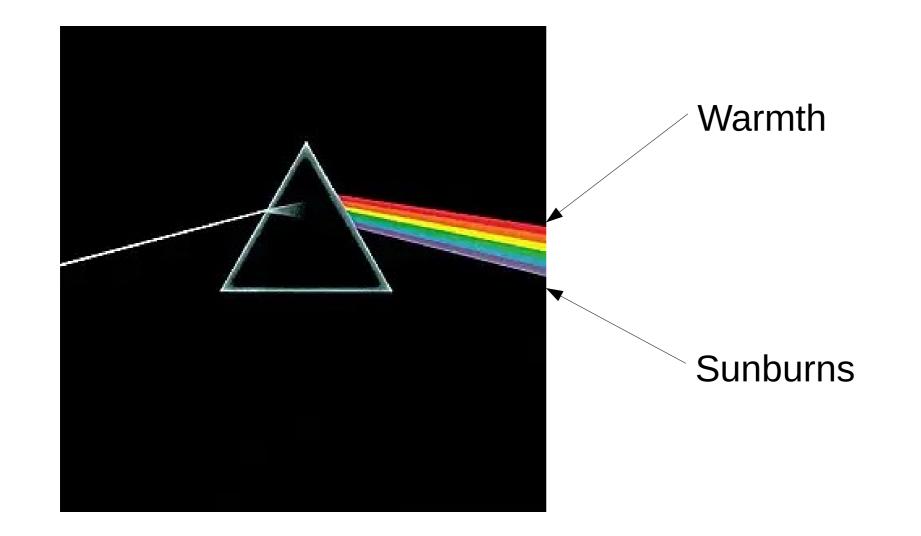
https://jedcrandall.github.io (and/or come to office hours)

Syllabus

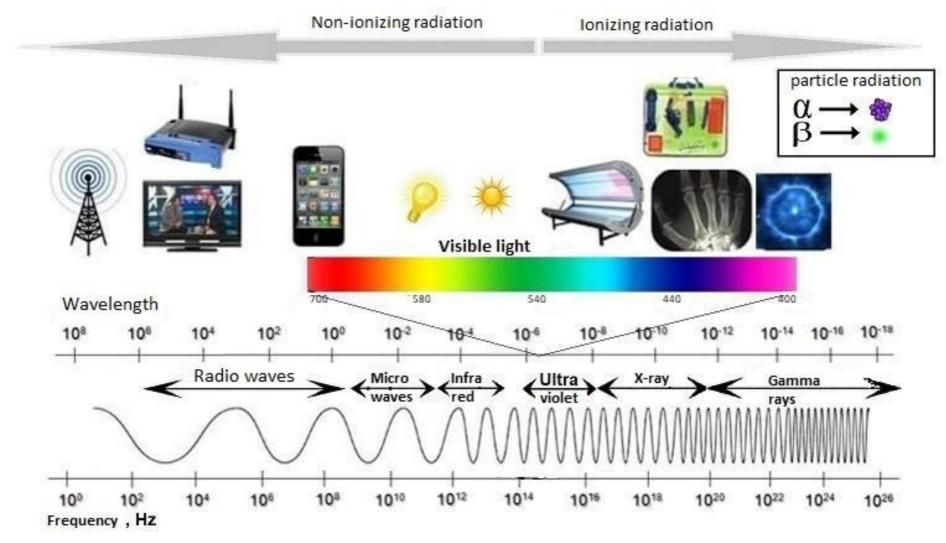
- Link from the previous slide, or Google my name
- Slides will also be on the course website, everything else will be in Canvas
 - No Piazza or anything else like that

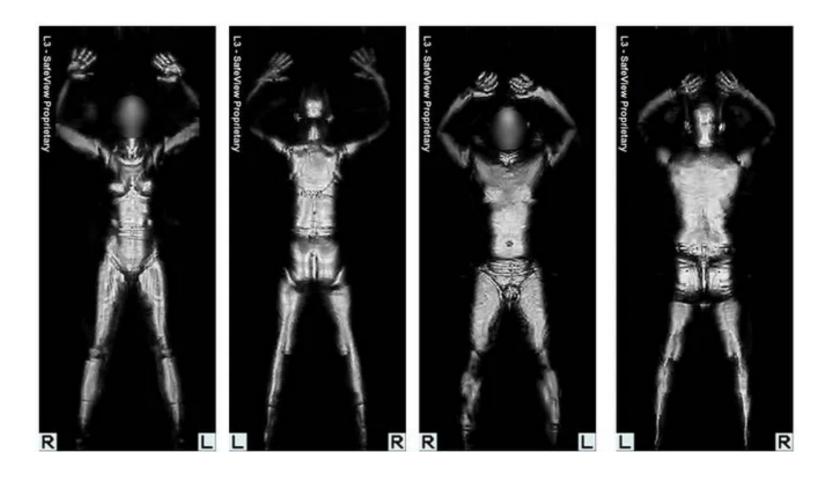
Three Parts of CSE 468

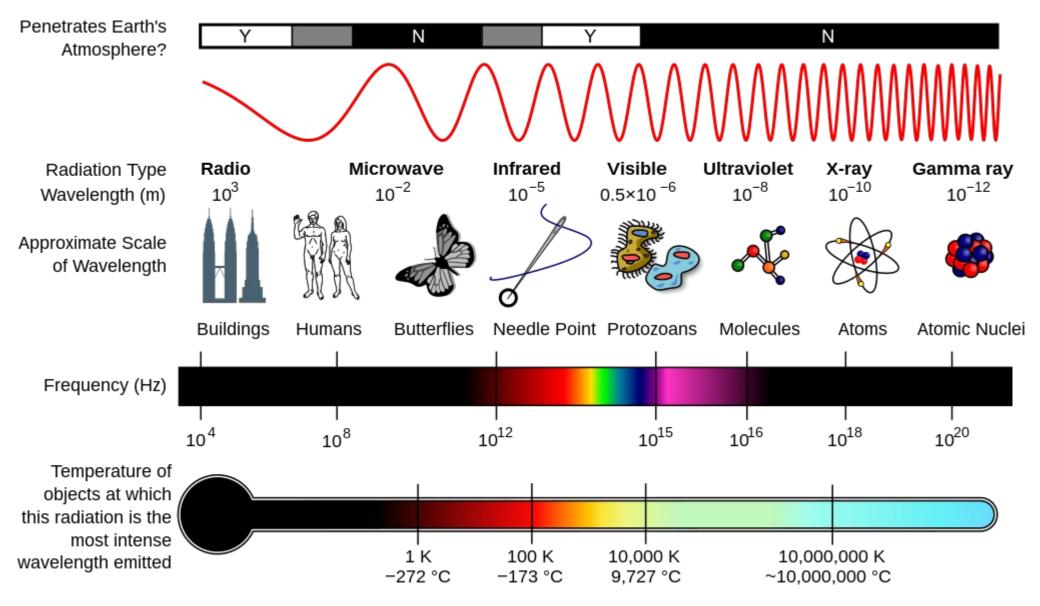
- Part 1: Internet and Crypto
 - Introducing this today
- Part 2: Network Intrusion Detection Systems (NIDS)
 - Deep Packet Inspection (DPI) and ways to evade it
- Part 3: Malware and Side Channels
 - Attacks on the DNS system, etc.


Part 1: Internet and Crypto

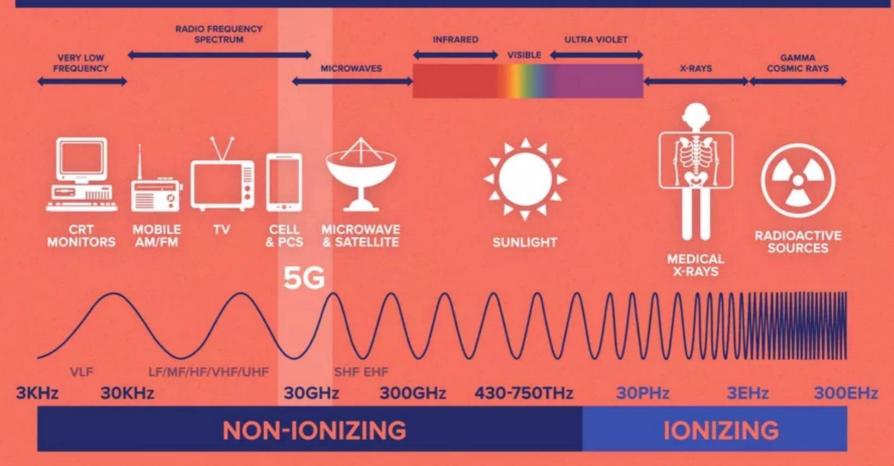
- What are the fundamentals of how the Internet is built that determine how we do confidentiality, integrity, and availability?
 - Or, what do rainbows have to do with network security?






The electromagnetic spectrum

https://www.uib.no/en/hms-portalen/75292/electromagnetic-spectrum

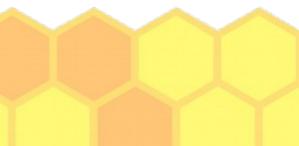


https://commons.wikimedia.org/wiki/File:EM_Spectrum_Properties_edit.svg

THE ELECTROMAGNETIC SPECTRUM

https://www.islandssounder.com/news/part-i-the-hype-about-5g/

Doctors at the X-Ray be like: "This is completely safe, don't worry" Also doctors at the X-Ray:


Microwaves

- EHF (Sir Jagadish Chandra Bose Bengali scientist) 30 to 300GHz
 - Point-to-point, satellite, IEEE 802.11ay (20 Gbps), security screening at the airport, 5G
- SHF 3 to 30 GHz
 - Point-to-point, radar, satellite phones, microwave ovens, 5G
- UHF 300 MHz to 3 GHz
 - TV, cell phones, satellites, GPS, WiFi, Bluetooth, walkie talkies, garage door openers, industrial controllers

https://www.reddit.com/r/nostalgia/comments/ut3emp/80s_tv_knobs_bonus_points_for_describing_the_feel/

Radio waves

- VHF 30MHz to 300MHz
 - Line of sight, but refracted up to 100 miles or so
 - FM radio, TV, amateur radio
- HF 3MHz to 30MHz
 - Reflected off the ionosphere
 - Military, amateur radio, maritime, CB radio
- MF 300KHz to 3 MHz
 - AM radio, maritime

As you go lower than 300 KHz...

• Weather, beacons, time, radio in other parts of the world, RFID, submarine communications

I'm not an expert in psychology or marketing, but I think it's safe to assume...

- Humans don't like to be fried alive
- Humans don't like their devices to have wires

In general, for practical CSE 468 purposes...

- Higher frequencies carry more information
 - We'll touch on information theory later in the semester
- Infrared and visible light cannot pass through objects (like walls)
 - Microwaves and radio waves can, basically
- Everything at a higher frequency than visible light is bad for us

Because of these reasons...

- The backbone of the Internet and servers are wired
 - Specifically, fiber optics (180 THz to 330 THz)
 - Need blessings from governments to bury the wires
 - Confidentiality: Light is *easy* to copy
 - Integrity: Light is *hard* to change in transit
 - Availability: Censorship, throttling, and shutdowns

Because of these reasons...

- The other (not servers) edges of the network (*i.e.*, people and their devices) are increasingly wireless
 - Need blessing from governments to use broadcast frequencies
 - Easy to find a high-powered transmission (see *Pump up the Volume*)
 - Attackers can receive and transmit at any frequency
 - Governments (*e.g.*, local law enforcement), stalkers, cartels, human traffickers, financially motivated attackers, nosy neighbors, *etc.*
 - Eavesdropping (C), spoofing (I), jamming (A)

We need cryptography

- Make your messages sent and received over the Internet unreadable to eavesdroppers (confidentiality)
 - Hide metadata about who you're talking to and what you're doing to evade censorship (availability)
- Make sure your messages sent and received over the Internet are not modified (integrity)

Crypto is more than "CIA"

- Non-repudiability
- Perfect forward secrecy
- Backward secrecy (a.k.a. future secrecy)
- Deniable encryption

Alternatives to crypto

- Code division multiple access (CDMA)
 - Invented (in the U.S., at least) by Hedy Lamarr (basically)
- Information theory, randomized algorithms, etc.
 - Currently not practical in terms of solving all our problems
- Line-of-sight, directional antennae
 - Not entirely practical for security reasons, but increasingly common for other reasons
 - Line of sight attacker (e.g., drone or in the Internet backbone)

CSE 468 Computer Network Security

Practical network security exposure and hands-on experience about basic security concepts, case studies and useful tools.

This semester

- Studying PCAPs to understand...
 - Why things (e.g., header fields and payloads) are encrypted/obfuscated the way they are
 - Why everything is about to change
 - Why deep packet inspection (DPI) is not straightforward
- Because we care about fundamentals, *i.e.*, the "why" part, we won't be able to avoid...
 - Computational complexity, abstract algebra, quantum physics, relativity, classical physics