Hash functions and certificates
 CSE 468 Fall 2023

jedimaestro@asu.edu

To prepare for this lecture...

https://media.ccc.de/v/25c3-3023-en-making_the_theoretical_possible
Also check out:
https://www.win.tue.nl/hashclash/rogue-ca/

ERERIFOTNT

Certificate Viewer: breakpointingbad.com

General

Issued To

Common Name (CN)
Organization (0) Organizational Unit (OU)
breakpointingbad.com <Not Part Of Certificate> <Not Part Of Certificate>

Issued By
Common Name (CN)
Organization (0)
Organizational Unit (OU)

Validity Period
Issued On
Expires On

Fingerprints
SHA-256 Fingerprint

SHA-1 Fingerprint

810541 BO 198 B 069 C 90207 FB EE 602 E AB BD 6425 F9 D8 DE 87 7D FD 7034 AC F9 F5 DE 92 C1 9559 2C 6612 BC 36717 E 99 C9 609812 0A B8 02 1D 47

We are a non-profit founded in 20 combined experience focusing on

Thursday, December 22, 2022 at 10:57:13 PM Wednesday, March 22, 2023 at 10:57:12 PM

Certificate Viewer: breakpointingbad.com

General Details

Issued To

$\begin{array}{ll}\text { Common Name (CN) } & \text { breakpointingbad.com } \\ \text { Organization (0) } & \text { <Not Part Of Certificate> } \\ \text { Organizational Unit (OU) } & \text { <Not Part Of Certificate> }\end{array}$

Issued By

Common Name (CN) R3
Organization (0)
Organizational Unit (OU)
Let's Encrypt
<Not Part Of Certificate>

Validity Period

Issued On	Thursday, December 22, 2022 at 10:57:13 PM
Expires On	Wednesday, March 22,2023 at 10:57:12 PM

Expires On Wednesday, March 22, 2023 at 10:57:12 PM

Fingerprints

SHA-256 Fingerprint 810541 Bo 19 8B 069 C 9020 7F B3 EE 60 2E AB BD 6425 F9 D8 DE 87 7D FD 7034 AC F9 F5 DE 92
SHA-1 Fingerprint C19559 2C 6612 BC 36717 E 99 C9 609812 0A
B8 02 1D 47
breakpointingbad.com

Certificate Fields

```
* breakpointingbad.com
    ~Certificate
        Version
        Serial Number
    Certificate Signature Algorithm
        Issuer
    - Validity
        Not Before
```

Field Value

```
04:B5:2A:1D:FD:B3:AC:F1:34:37:27:94:9F:F5:A8:5A:12:E6
```

Certificate Fields

- breakpointingbad.com
- Certificate

Version
Serial Number
Certificate Signature Algorithm
Issuer

- Validity

Not Before

Field Value
PKCS \#1 SHA-256 With RSA Encryption

Certificate Fields

- breakpointingbad.com
- Certificate

Version
Serial Number
Certificate Signature Algorithm
Issuer

- Validity

Not Before

Field Value

```
CN = R3
O= Let's Encrypt
C=US
```

breakpointingbad.com

Certificate Fields

	Certificate Signature Algorithm
	Issuer
∇ Validity	
	Not Before
	Not After
	Subject
∇	Subject Public Key Info
Subject Public Key Algorithm	

Field Value
3/22/23, 10:57:12 PM MST
breakpointingbad.com

Certificate Fields

	Certificate Signature Algorithm
Issuer	
∇ Validity	
	Not Before
	Not After
	Subject
∇	Subject Public Key Info
Subject Public Key Algorithm	

Field Value
$\mathrm{CN}=$ breakpointingbad.com

breakpointingbad.com

Certificate Fields

Not After	
Subject	
∇ Subject Public Key Info	
Subject Public Key Algorithm	
Subject's Public Key	
∇ Extensions	
Certificate Key Usage	
Extended Key Usage	

Field Value
Modulus (2048 bits):
DC DA F0 9647 5C 62912727 AD B2 95 EE 3D 51
CF 26 EB EC 27 EE ED 2E 9F DA 1D BF 832 F 12 F0 EA CC 96 5B 8C C1 3E A1 C6 4690 4D E5 9320 E1 5C 9B 62 BB 82 3A 7F 77 7C 85 CB 8C F3 0F B9 0D
38749 C OD 39 8C. FF F4 R5 AD 0A 9475 AA F9 41

Certificate Fields

```
* breakpointingbad.com
    * Certificate
        Version
        Serial Number
        Certificate Signature Algorithm
        Issuer
        Validity
        Not Before
```

Field Value

```
98 2F 52 F3 68 LE 6D BL 18 2C 93 428BC541 DT
40 B4 0F 53 D9 BD BA 22 F9 52 90 76 37 F0 C4 56
31 F8 8D C7 B8 21 3E FB 0F 83 B8 A7 CF F3 B4 A1
Public Exponent (17 bits): 010001
```

Certificate Hierarchy

- Builtin Object Token:ISRG Root X1
- R3
breakpointingbad.com

Certificate Fields

```
    Subject's Public Key
    * Extensions
    Certificate Key Usage
    Extended Key Usage
    Certificate Basic Constraints
    Certificate Subject Key ID
    Certification Authority Key ID
    Authority Information Access
```

Field Value

```
Critical
Is not a Certification Authority
```

Certificate Fields
Certificate Subject Alternative Name
Certificate Policies
OID.1.3.6.1.4.1.11129.2.4.2
Certificate Signature Algorithm
Certificate Signature Value
∇ Fingerprints
SHA-256 Fingerprint
SHA-1 Fingerprint

Field Value
810541 Bo 19 8B 069 C 9020 7F B3 EE 60 2E AB BD 6425 F9 D8 DE 87 7D FD 7034 AC F9 F5 DE 92

Certificate Viewer: breakpointingbad.com

Certificate Hierarchy

- Builtin Object Token:ISRG Root X1
- R3
breakpointingbad.com

Certificate Fields

```
\[
\nabla R 3
\]
- Certificate
Version
Serial Number
Certificate Signature Algorithm
Issuer
- Validity
Not Before
```


Field Value

CN $=$ ISRG Root X1
$0=$ Internet Security Research Group
$\mathrm{O}=\mathrm{Int}$
$\mathrm{C}=\mathrm{US}$

Certificate Fields

```
~ R3
```

- Certificate

Version
Serial Number
Certificate Signature Algorithm
Issuer

- Validity

Not Before

Field Value

```
CN = ISRG Root X1
O= Internet Security Research Group
C=US
```


Builtin Object Token:ISRG Root X1

- R3
breakpointingbad.com

Certificate Fields

sudjects pudit ney - Extensions	
Certificate Key Usage	
Extended Key Usage	
Certificate Basic Constraints	
Certificate Subject Key ID	
Certification Authority Key ID	
Authority Information Access	

Field Value

Critical

Is a Certification Authority
Maximum number of intermediate CAs: 0

```
 Builtin Object Token:ISRG Root X1
```

 - R3
 breakpointingbad.com
 Certificate Fields

- Builtin Object Token:ISRG Root X1
- Certificate

Version
Serial Number
Certificate Signature Algorithm
Issuer

- Validity

Not Before
Field Value

```
CN = ISRG Root X1
\(0=\) Internet Security Research Group
\(\mathrm{C}=\mathrm{US}\)
```

```
* Builtin Object Token:ISRG Root X1
```

 - R3
 breakpointingbad.com
Certificate Fields
sudjects Pudic key
∇ Extensions
Certificate Key Usage
Certificate Basic Constraints
Certificate Subject Key ID
Certificate Signature Algorithm
Certificate Signature Value
∇ Fingerprints
n..................

Field Value

Critical
Is a Certification Authority
Maximum number of intermediate CAs: unlimited
org-GlobalSign nv-sa

- Privacy and security
(1) Appearance

Q Search engine
ㅌ. Default browser
(1) On startup
(\#) Languages

- Downloads

페 Accessibility

- System
(1) Reset settings

2 Extensions 【
(G) About Chromium
org-GoDaddy.com, Inc.
org-Google Trust Services LLC
org-Government Root Certification Authority
org-GUANG DONG CERTIFICATE AUTHORITY CO.,LTD.
org-Hellenic Academic and Research Institutions Cert. Authority
org-Hongkong Post
org-IdenTrust
org-Internet Security Research Group
org-IZENPE S.A.
org-Japan Certification Services, Inc.
org-Krajowa Izba Rozliczeniowa S.A.

Why hash functions?

- Speed
- Error detection (e.g., checksum)
- Security and privacy

Why cryptographic hash functions?

- Unique identifier for an object
- Integrity of an object
- E.g., message authentication codes
- Digital signatures
- Sign the digest
- E.g., 1024-bit RSA, 100MB message, 256-bit digest
- Passwords
- Proof of work

https://en.wikipedia.org/wiki/HMAC

Hash function example

Input

Digest

What makes a hash function cryptographic?

- One-way function
- Deterministic (same input, same output)
- Infeasible to find message that digests to specific hash value
- Infeasible to find two messages that digest to the same hash
- Avalanche effect (small change in message leads to big changes in digest---digests seemingly uncorrelated)
- Still want it to be quick

Example algorithms

- MD5: 128-bit digest, seriously broken
- SHA-1: 160-bit digest, not secure against well-funded adversaries
- SHA-3: 224 to 512 bit digest, adopted in August of 2015
- CRC32: not cryptographic, very poor choice

Example algorithms

- MD5: 128-bit digest, seriously broken
- SHA-1: 160-bit digest, not secure against well-funded adversaries
- SHA-3: 224 to 512 bit digest, adopted in August of 2015
- CRC32: not cryptographic, very poor choice

Property \#1

- Pre-image resistance
- Given h, it should be infeasible to find m such that $h=$ hash(m)

Neither MD5 nor SHA-3 are broken in this way, but MD5 digests are small.

Property \#2

- Second pre-image resistance
- Given a message m_{1}, it should be infeasible to find another message m_{2} such that... $\operatorname{hash}\left(m_{1}\right)=\operatorname{hash}\left(m_{2}\right)$

Neither MD5 nor SHA-3 are broken in this way, but MD5 digests are small.

Property \#3

- Collision resistance
- It should be infeasible to find two messages, m_{1} and m_{2} such that... $\operatorname{hash}\left(m_{1}\right)=\operatorname{hash}\left(m_{2}\right)$

SHA-3 is not broken in this way, MD5 broken in seconds on your laptop, SHA-1 with $\$ 100 \mathrm{~K}$ or so.

Wang Xiaoyun

- Tsinghua University

- Contributed a lot of ideas to cracking MD5, SHA-0, and SHA-1

Length extension attack

```
jedi@mariposa:~$ echo "password='lDEnr45#d3'&donut=choc&quantity=1" | md5sum
91a9fc74a98997dba291a26a91c9648e -
jedi@mariposa:~$ echo "password='lDEnr45#d3'&donut=choc&quantity=100" | md5sum
8fdd2d4515bcba887b1b80a653f21e0c -
```


\qquad

```jedi@mariposa:~\$ echo "password=\&donut=choc\&quantity=100" | md5sum8fdd2d4515bcba887b1b80a653f21e0c
```


MD5 and SHA-1 vulnerable, SHA-3 is not

Length extension attack

- One issue is if the attacker doesn't know the password
- Another issue is if the password is different but the attacker finds a collision later on
- MD5 and SHA-1 are vulnerable, SHA-3 is not

MD5

- Pad to multiple of 512 bits
- 4 rounds
- 4 32-bit words at a time
- Concatenate them at the end for a 128-bit digest

- F is non-linear, varies by round

Round (i)	$F(X, Y, Z)$	g
0	$(X \wedge Y) \vee(\neg X \wedge Z)$	i
1	$(X \wedge Z) \vee(Y \wedge \neg Z)$	$(5 \times i+1) \bmod 16$
2	$(X \oplus Y \oplus Z)$	$i(3 \times i+5) \bmod 16$
3	$(Y \oplus(X \vee \neg Z))$	$(7 \times i) \bmod 16$

http://koclab.cs.ucsb.edu/teaching/cren/project/2008/savage.pdf

SHA-3

- Sponge construction, 1600 bits of internal state

https://en.wikipedia.org/wiki/SHA-3

Birthday attack

- Probability of collision is 1 in 2^{n}, but the expected number of hashes until two of them collide is $\operatorname{sqrt}\left(2^{n}\right)=2^{n / 2}$
- Why? Third try has two opportunities to collide, fourth has three opportunities, fifth has six, and so on...

24 people, same birthday?

Chosen-prefix collision attack

- Given two prefixes p_{1} and p_{2}, find m_{1} and m_{2} such that $\operatorname{hash}\left(p_{1} \| m_{1}\right)=\operatorname{hash}\left(p_{2} \| m_{2}\right)$
- p1 and p2 could be domain names in a certificate, images, PDFs, etc. ... any digital image.

Ingredients for a practical chosen prefix attack on MD5

- Collision attack on MD5
- That works for any initialization vector (so you can put bits in front)
- Length extension attack
- So you can put identical bits on the end
- Birthday attack
- So you can bridge the prefix to a block that meets the requirements of the collision attack

MD5 collision attack by Wang and Yu

$$
\begin{gathered}
C_{0}=\left(0,0,0,0,2^{31}, 0,0,0,0,0,0,2^{15}, 0,0,2^{31}, 0\right) \\
\quad \text { and } \\
C_{1}=\left(0,0,0,0,2^{31}, 0,0,0,0,0,0,-2^{15}, 0,0,2^{31}, 0\right)
\end{gathered}
$$

Round (i)	$F(X, Y, Z)$	g
0	$(X \wedge Y) \vee(\neg X \wedge Z)$	i
1	$(X \wedge Z) \vee(Y \wedge \neg Z)$	$(5 \times i+1) \bmod 16$
2	$(X \oplus Y \oplus Z)$	$i(3 \times i+5) \bmod 16$
3	$(Y \oplus(X \vee \neg Z))$	$(7 \times i) \bmod 16$

http://koclab.cs.ucsb.edu/teaching/cren/project/2008/savage.pdf

An example

Both have digest 79054025255fb1a26e4bc422aef54eb4
d131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb7f89 55ad340609f4b30283e488832571415a085125e8f7cdc99fd91dbdf280373c5b d8823e3156348f5bae6dacd436c919c6dd53e2b487da03fd02396306d248cda0 e99f33420f577ee8ce54b67080a80d1ec69821bcb6a8839396f9652b6ff72a70
d131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb7f89 55ad340609f4b30283e4888325f1415a085125e8f7cdc99fd91dbd7280373c5b d8823e3156348f5bae6dacd436c919c6dd53e23487da03fd02396306d248cda0 e99f33420f577ee8ce54b67080280d1ec69821bcb6a8839396f965ab6ff72a70
https://www.mscs.dal.ca/~selinger/md5collision/

Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate

Marc Stevens ${ }^{1}$, Alexander Sotirov ${ }^{2}$, Jacob Appelbaum ${ }^{3}$, Arjen Lenstra ${ }^{4,5}$, David Molnar ${ }^{6}$, Dag Arne Osvik ${ }^{4}$, and Benne de Weger ${ }^{7}$

Fig. 1. The to-be-signed parts of the colliding certificates

Slide from MD5 Considered Harmful Today, Creating a rogue CA certificate by Sotirov et al.

CN=Starfield Services Root Certificate Authority

- G2,O=Starfield Technologies, Inc.,L=Scottsdale,ST=Arizona,C=US

CN=COMODO RSA Certification Authority,O=COMODO CA Limited, $\mathrm{L}=$ Salford, $\mathrm{ST}=$ Greater Manchester,C=GB

CN=Amazon Root CA 3,O=Amazon,C=US

CN=Microsoft RSA Root Certificate Authority 2017,O=Microsoft Corporation,C=US

OU=certSIGN ROOT CA G2,O=CERTSIGN SA,C=RO

CN=TUBITAK Kamu SM SSL Kok Sertifikasi Surum 1,OU=Kamu Sertifikasyon Merkezi Kamu SM,O=Turkiye Bilimsel ve Teknolojik Arastirma Kurumu - TUBITAK,L=Gebze Kocaeli,C=TR

CN=CFCA EV ROOT,O=China Financial Certification Authority, $\mathrm{C}=\mathrm{CN}$

Preparation for next lecture...

https://www.youtube.com/watch?v=fZ1R9RliM1w

References

- [Cryptography Engineering] Cryptography Engineering: Design Principles and Applications, by Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Wiley Publishing, 2010.
- Lots of images and info plagiarized from Wikipedia

