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To prepare for this lecture...

● https://jedcrandall.github.io/courses/cse539spring2023/R
sapaper.pdf

https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf
https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf
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RSA vs. DH

● Diffie-Hellman (1976)
● Key exchange
● Both sides get to choose something random

● RSA (1977)
● Encryption
● Signatures



  



  



  

RSA

● Security is based on the hardness of integer 
factorization



  

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are 

relatively prime to n
● totient(n) = lcm(p – 1, q – 1) = 780

● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1



  

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Using RSA for key exchange or encryption is often a red flag, 

more commonly used for signatures



  



  



  

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”



  



  

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function



  



  



  



  

(About 665 bits, 2048 or 4096 are standard today)



  



  



  



  

Takeaways so far

● RSA let’s you do encryption, signatures
● Even “textbook RSA” is not trivial to implement

● “Textbook RSA”, as presented in the paper and in most 
textbooks, is not secure against chosen ciphertext attacks 
and other types of attacks.



  



  

= about 665 bits



  



  



  



  



  

More takeaways

● RSA, to some extent, depends on “we’ve tried to crack it for a long time, but 
couldn’t”, as do DES, AES, etc.

● But the paper also includes some, e.g., reduction proofs
● Textbook RSA is not good enough
● Some differences with Diffie-Hellman

● Threat model
● RSA is tricky to implement in a secure way
● Composite number
● Who gets to contribute randomness?

● Similarities?
● Both are broken by quantum computers



  

RSA in real cryptosystems

● What we just learned, and read about in the paper, is 
called “Textbook RSA”

● Not secure and should not be used (padding is strictly 
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels



  

Side notes

● GCHQ claims to have invented RSA in 1973, and 
declassified this info in 1997

● In my own research (e.g., looking for amateurish crypto 
in Android apps) using RSA for key distribution is often a 
red flag

● An authenticated version of Diffie-Hellman is better, most 
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)



  

Okay to grab the RSA paper and start coding?  
Or just use a textbook, i.e., textbook RSA?



  



  



  

WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf
● The other issues in that paper and previous papers have 

been fixed, but they still appear to be using textbook 
RSA

https://arxiv.org/pdf/1802.03367.pdf


  

Coming up...

● WUP request attack on RSA in more detail
● Optimal Assymetric Encryption Padding (OAEP)

● To prevent padding oracle attacks on RSA
● Random oracle model
● Formalizing attacks

● Ciphertext only, known plaintext, chosen plaintext
● Chosen ciphertext
● CPA, CPA2, CCA, CCA2 (2 = adaptive)
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RSA padding is not optional

● Security of RSA completely breaks down without 
padding

● Optimal Assymetric Encryption Padding (OAEP) solves 
this problem

● Random oracle model



  37https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf



  38https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf
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  41https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf



  42https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf
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State of BAT Browsers circa 2016

● UCBrowser and Baidu Browser used purely symmetric crypto
● Reverse engineer APK, passively decrypt on the wire

● QQ Browser used a 128-bit RSA modulus
● Factor in <3 seconds with Wolfram Alpha, passively decrypt on 

the wire
● Some other details not relevant to this lecture

● Peculiar TEA-based algorithm for all three
● Insecure update mechanisms 

Unpublished research 2023: Not much has changed.
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QQ Browser

● WUP requests
● >10% of the apps in the Tencent app store make WUP 

requests
● Used to send telemetry, etc., back to the server, request and 

download updates, etc.



  46https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf



  47

Basic protocol for WUP request encryption

● Client chooses a “random” 128-bit AES key
● Session key

● Client encrypts that with the server’s RSA public key
● Using textbook RSA

● Client encrypts the WUP request with the AES session key
● Client appends the encrypted WUP request to the RSA-

encrypted AES session key
● Sends it to the server
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WUP server

● Receives the request from the client
● Uses its private key to decrypt the AES session key
● Uses the AES session key to decrypt the WUP request
● If decryption succeeds, responds with a WUP response 

that is encrypted with the same AES key
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Assumptions

● RSA modulus is 1024 bits
● Versions ≤6.3.0.1920 had 128 bits

● Entropy pool for randomness, and not ASCII-ified
● Versions ≤6.5.0.2170 used srand(time())
● Versions ≤6.3.0.1920 ASCII-ified the key (<253 entropy)

● Textbook RSA
● Versions >6.5.0.2170 might do padding? (can’t remember)
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Padding oracle attack

● Eve eavesdrops a WUP request from Alice to Bob
● Eve replays slightly modified versions of the WUP 

request’s RSA ciphertext (chosen ciphertext attack), 
learning one bit at a time of the RSA plaintext (the AES 
session key)

● Once the AES session key is recovered, Eve can 
decrypt Alice’s WUP request
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https://en.wikipedia.org/wiki/
Daniel_Bleichenbacher

● Bleichenbacher-style attack published in 1998
● Chosen ciphertext attack
● Padding oracle attack

● 0x00 0x02 [non-zero bytes] 0x00 [M]
● 2-17 to 2-15 probability a random ciphertext has this format 

when decrypted with RSA
● https://crypto.stackexchange.com/questions/12688/can-you-

explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
● Takes a few million connections

https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
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A much simpler attack (on QQ Browser)

● https://arxiv.org/abs/1802.03367
● Not necessary at the time we discovered it
● May or may not be applicable today
● Good for pedagogical purposes

https://arxiv.org/abs/1802.03367
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c × 2127e
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By the 128th step...
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Offline attacks are possible for smaller key sizes
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QQ’s padding is vulnerable

● Padding scheme is “ignore all but the lowest order 128 
bits”

● Other padding schemes that are more sophisticated 
could still be vulnerable

● How do we know if a padding scheme is good enough?
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https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf
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https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg

OAEP
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Good enough?

● Proven to be IND-CCA2 secure (with some 
assumptions)

● Reduction proof
● What this means in practice:

● If I’m using RSA-OAEP and you perform an adaptive chosen 
ciphertext attack against my scheme, give me the source 
code for your attack and I’ll use it to factor large integers
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What is IND-CCA2?

● In the olden days, in the beforetime, in the long long ago…
● Ciphertext only (Viginere cipher cracking), known plaintext 

(linear cryptanalysis, Enigma), chosen plaintext (differential 
cryptanalysis)

● Now threat models are very complicated, but in a nutshell:
● IND-CPA – Indistinguishability under chosen plaintext attack
● IND-CCA – Indistinguishability under chosen ciphertext attack
● IND-CCA2 – Indistinguishability under chose ciphertext attack 

(adaptive)
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IND-CCA2 in a nutshell

● I’ll encrypt or decrypt as many plaintexts or ciphertexts as 
you like

● plaintext/ciphertext pairs
● You give me two plaintexts, I’ll flip a coin (heads or tails) and 

encrypt one of them (you don’t know which) to give you C
● In polynomial time, you can do more encryption and 

decryption, just not for C
● You guess my coin flip (heads or tails)
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If you can’t win with >50% probability

● You can’t break my scheme (e.g., OAEP) with an 
adaptive chosen ciphertext attack
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If you can win with >50% probability

● You’ve potentially broken my scheme with an adaptive 
chosen ciphertext attack

● Let’s win the Turing award together, by publishing a 
paper showing how to factor large integers with a 
classical computer in polynomial time

● Or, build a cybercrime cartel together?
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If people ignore the science of cryptography 
(e.g., “who needs semantic security?”), but their 
schemes have not been broke, should you trust 

those schemes?
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https://core.telegram.org/img/mtproto_encryption.png
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https://core.telegram.org/api/end-to-end
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Some “attacks” and criticisms...

● https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.p
df

● https://unhandledexpression.com/crypto/general/security/2013/12/1
7/telegram-stand-back-we-know-maths.html

● https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cr
yptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf

● https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.p
df

● https://mtpsym.github.io/
● https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf

https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://mtpsym.github.io/
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf
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Takeaways

● Padding is important
● Cryptography is a science

● You don’t always have to settle for “we tried to break it 
really hard for a long time and couldn’t”

● See, e.g., the reduction proofs in both RSA and OAEP
● “We tried to break it really hard for a long time and 

couldn’t” is still valuable, though



  

Prepare for next lecture (Canvas discussion)

● Go to a few of your favorite websites
● If they don’t support HTTPS, say so in Canvas

● They really should support HTTPS, I’d be interested to know major websites 
that still don’t

● If they do support HTTPS, check the chain of trust and the public key’s 
exponent using your browser’s ability to inspect a TLS cert

● Is e = 0x10001?  (65537 in decimal)
● Domain Validation (DV) or something else?

● See if you can find the entire list of trusted Certificate Authorities (CAs)
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