
 1

RSA, padding oracle attacks, OAEP

CSE 539
jedimaestro@asu.edu

 2

To prepare for this lecture...

● https://jedcrandall.github.io/courses/cse539spring2023/R
sapaper.pdf

https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf
https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf

 3

RSA vs. DH

● Diffie-Hellman (1976)
● Key exchange
● Both sides get to choose something random

● RSA (1977)
● Encryption
● Signatures

RSA

● Security is based on the hardness of integer
factorization

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are

relatively prime to n
● totient(n) = lcm(p – 1, q – 1) = 780

● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Using RSA for key exchange or encryption is often a red flag,

more commonly used for signatures

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function

(About 665 bits, 2048 or 4096 are standard today)

Takeaways so far

● RSA let’s you do encryption, signatures
● Even “textbook RSA” is not trivial to implement

● “Textbook RSA”, as presented in the paper and in most
textbooks, is not secure against chosen ciphertext attacks
and other types of attacks.

= about 665 bits

More takeaways

● RSA, to some extent, depends on “we’ve tried to crack it for a long time, but
couldn’t”, as do DES, AES, etc.

● But the paper also includes some, e.g., reduction proofs
● Textbook RSA is not good enough
● Some differences with Diffie-Hellman

● Threat model
● RSA is tricky to implement in a secure way
● Composite number
● Who gets to contribute randomness?

● Similarities?
● Both are broken by quantum computers

RSA in real cryptosystems

● What we just learned, and read about in the paper, is
called “Textbook RSA”

● Not secure and should not be used (padding is strictly
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels

Side notes

● GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

● In my own research (e.g., looking for amateurish crypto
in Android apps) using RSA for key distribution is often a
red flag

● An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)

Okay to grab the RSA paper and start coding?
Or just use a textbook, i.e., textbook RSA?

WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf
● The other issues in that paper and previous papers have

been fixed, but they still appear to be using textbook
RSA

https://arxiv.org/pdf/1802.03367.pdf

Coming up...

● WUP request attack on RSA in more detail
● Optimal Assymetric Encryption Padding (OAEP)

● To prevent padding oracle attacks on RSA
● Random oracle model
● Formalizing attacks

● Ciphertext only, known plaintext, chosen plaintext
● Chosen ciphertext
● CPA, CPA2, CCA, CCA2 (2 = adaptive)

 36

RSA padding is not optional

● Security of RSA completely breaks down without
padding

● Optimal Assymetric Encryption Padding (OAEP) solves
this problem

● Random oracle model

 37https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 38https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 39https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 40https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 41https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 42https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 43

State of BAT Browsers circa 2016

● UCBrowser and Baidu Browser used purely symmetric crypto
● Reverse engineer APK, passively decrypt on the wire

● QQ Browser used a 128-bit RSA modulus
● Factor in <3 seconds with Wolfram Alpha, passively decrypt on

the wire
● Some other details not relevant to this lecture

● Peculiar TEA-based algorithm for all three
● Insecure update mechanisms

Unpublished research 2023: Not much has changed.

 44

 45

QQ Browser

● WUP requests
● >10% of the apps in the Tencent app store make WUP

requests
● Used to send telemetry, etc., back to the server, request and

download updates, etc.

 46https://www.usenix.net/sites/default/files/conference/protected-files/foci16_slides_knockel.pdf

 47

Basic protocol for WUP request encryption

● Client chooses a “random” 128-bit AES key
● Session key

● Client encrypts that with the server’s RSA public key
● Using textbook RSA

● Client encrypts the WUP request with the AES session key
● Client appends the encrypted WUP request to the RSA-

encrypted AES session key
● Sends it to the server

 48

WUP server

● Receives the request from the client
● Uses its private key to decrypt the AES session key
● Uses the AES session key to decrypt the WUP request
● If decryption succeeds, responds with a WUP response

that is encrypted with the same AES key

 49

Assumptions

● RSA modulus is 1024 bits
● Versions ≤6.3.0.1920 had 128 bits

● Entropy pool for randomness, and not ASCII-ified
● Versions ≤6.5.0.2170 used srand(time())
● Versions ≤6.3.0.1920 ASCII-ified the key (<253 entropy)

● Textbook RSA
● Versions >6.5.0.2170 might do padding? (can’t remember)

 50

 51

 52

Padding oracle attack

● Eve eavesdrops a WUP request from Alice to Bob
● Eve replays slightly modified versions of the WUP

request’s RSA ciphertext (chosen ciphertext attack),
learning one bit at a time of the RSA plaintext (the AES
session key)

● Once the AES session key is recovered, Eve can
decrypt Alice’s WUP request

 53

https://en.wikipedia.org/wiki/
Daniel_Bleichenbacher

● Bleichenbacher-style attack published in 1998
● Chosen ciphertext attack
● Padding oracle attack

● 0x00 0x02 [non-zero bytes] 0x00 [M]
● 2-17 to 2-15 probability a random ciphertext has this format

when decrypted with RSA
● https://crypto.stackexchange.com/questions/12688/can-you-

explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
● Takes a few million connections

https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5

 54

A much simpler attack (on QQ Browser)

● https://arxiv.org/abs/1802.03367
● Not necessary at the time we discovered it
● May or may not be applicable today
● Good for pedagogical purposes

https://arxiv.org/abs/1802.03367

 57

 58

 59

 60

 61

 62

 63

 64

c × 2127e

 65

 66

 67

 68

 69

 70

 71

By the 128th step...

 72

 73

 74

 75

Offline attacks are possible for smaller key sizes

 76

QQ’s padding is vulnerable

● Padding scheme is “ignore all but the lowest order 128
bits”

● Other padding schemes that are more sophisticated
could still be vulnerable

● How do we know if a padding scheme is good enough?

 77
https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf

 78
https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg

OAEP

 79

Good enough?

● Proven to be IND-CCA2 secure (with some
assumptions)

● Reduction proof
● What this means in practice:

● If I’m using RSA-OAEP and you perform an adaptive chosen
ciphertext attack against my scheme, give me the source
code for your attack and I’ll use it to factor large integers

 80

What is IND-CCA2?

● In the olden days, in the beforetime, in the long long ago…
● Ciphertext only (Viginere cipher cracking), known plaintext

(linear cryptanalysis, Enigma), chosen plaintext (differential
cryptanalysis)

● Now threat models are very complicated, but in a nutshell:
● IND-CPA – Indistinguishability under chosen plaintext attack
● IND-CCA – Indistinguishability under chosen ciphertext attack
● IND-CCA2 – Indistinguishability under chose ciphertext attack

(adaptive)

 81

IND-CCA2 in a nutshell

● I’ll encrypt or decrypt as many plaintexts or ciphertexts as
you like

● plaintext/ciphertext pairs
● You give me two plaintexts, I’ll flip a coin (heads or tails) and

encrypt one of them (you don’t know which) to give you C
● In polynomial time, you can do more encryption and

decryption, just not for C
● You guess my coin flip (heads or tails)

 82

If you can’t win with >50% probability

● You can’t break my scheme (e.g., OAEP) with an
adaptive chosen ciphertext attack

 83

If you can win with >50% probability

● You’ve potentially broken my scheme with an adaptive
chosen ciphertext attack

● Let’s win the Turing award together, by publishing a
paper showing how to factor large integers with a
classical computer in polynomial time

● Or, build a cybercrime cartel together?

 84

If people ignore the science of cryptography
(e.g., “who needs semantic security?”), but their
schemes have not been broke, should you trust

those schemes?

 85

 86
https://core.telegram.org/img/mtproto_encryption.png

 87
https://core.telegram.org/api/end-to-end

 88

Some “attacks” and criticisms...

● https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.p
df

● https://unhandledexpression.com/crypto/general/security/2013/12/1
7/telegram-stand-back-we-know-maths.html

● https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cr
yptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf

● https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.p
df

● https://mtpsym.github.io/
● https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf

https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://mtpsym.github.io/
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf

 89

Takeaways

● Padding is important
● Cryptography is a science

● You don’t always have to settle for “we tried to break it
really hard for a long time and couldn’t”

● See, e.g., the reduction proofs in both RSA and OAEP
● “We tried to break it really hard for a long time and

couldn’t” is still valuable, though

Prepare for next lecture (Canvas discussion)

● Go to a few of your favorite websites
● If they don’t support HTTPS, say so in Canvas

● They really should support HTTPS, I’d be interested to know major websites
that still don’t

● If they do support HTTPS, check the chain of trust and the public key’s
exponent using your browser’s ability to inspect a TLS cert

● Is e = 0x10001? (65537 in decimal)
● Domain Validation (DV) or something else?

● See if you can find the entire list of trusted Certificate Authorities (CAs)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

