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To prepare for this lecture...


https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf
https://jedcrandall.github.io/courses/cse539spring2023/Rsapaper.pdf

RSA vs. DH

* Diffie-Hellman (1976)

« Key exchange
* Both sides get to choose something random
« RSA (1977)

* Encryption
« Signatures



A L L LT T e e ey







RSA

« Security is based on the hardness of integer
factorization



n=pq
p and g are primes, suppose p =61, q =53
n = 3233

Euler's totient counts the positive integers up to n that are
relatively prime to n

totient(in) =lcm(p-1,g-1) =780
52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
60,120,180,240,300,360,420,480,540,600,660,720,780

Choose 1 < e <780 coprime to 780, e.g., e = 17
d is the modular multiplicative inverse of e, d = 413
413 *17 mod 780 =1



Public key is (n = 3233, e =17)

Private key is (n = 3233, d = 413)

Encryption: c(m = 65) = 65'" mod 3233 = 2790
Decryption: m = 2790*° mod 3233 = 65

Could also do...

« Signature: s = 100**®* mod 3233 = 1391
« Verification: 100 = 1391' mod 3233

Fast modular exponentiation is the trick

Using RSA for key exchange or encryption is often a red flag,
more commonly used for signatures



jedi@routes6: ~

:~%$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)

[GCC 9.3.0] on 1linux
Type "help", "copyright", "credits" or "license" fTor more information.

>>> for i in range (52, 781, 52):
for j in range (60, 781, 60):
if (i == j):
print(i)

print((413 * 17) % 780)

print(pow(2790, 413, 3233))

print(pow(65, 17, 3233))
2790
>>> print(pow(100, 413, 3233))

1391
>>> print(pow(1391, 17, 3233))




jedi@routes6: ~

>>> print(pow(2790, 413, 3233))
65

>>> print(pow(65, 17, 3233))
2790

>>> print(pow(100, 413, 3233))
1391

>>> print(pow(1391, 17, 3233))
100

>>> print(pow(7, 17, 3233))
2369

>>> print((2369*2790) % 3233)
1258
print(pow(1258, 413, 3233))

print(7*65)

print("{0:b}".format(78913))
1001101000100600001
>>> print("{0:b}".format(78913*32))
1001101000100000100000
>>> print("{0:b}".format(78913<<5))
1001101000100000100000
—_— |



“Relatively prime”

9 is not prime, 9 = 32

13 is prime

10 is not prime, 10 = 5*2

9 and 10 are relatively prime, gcd(9,10) = 1

5 and 10 are not relatively prime, gcd(5,10) =5
Also called “coprime”



M?*™ =1 (mod n) . (3)

Here ¢(n) is the Euler totient function giving number of positive integers less than n
which are relatively prime to n. For prime numbers p,

o(p)=p—1.

In our case, we have by elementary properties of the totient function [7]:

o(n) = o(p)-9(q)
= (p—1)-(¢g—1) (4)
n—((p+q +1.

Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

Oo———0



Euler's totient function

* https://en.wikipedia.org/wiki/Euler%27s_totient function
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In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively

Y

C prime to n. It is written using the Greek letter phi as .:p(n) or gé(n), and may also be called Euler's phi function.

i)

(Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then
@(mn) = (p[m}(p(n].[41[5] This function gives the order of the multiplicative group of integers modulo n (the group ol
O— units of the ring Z/RZ}.[E’] It is also used for defining the RSA encryption system.
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M\ M
Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

e-d=1 (mod ¢(n)). (5)
0O
“o—o-
OO
D(E(M)) = (E(M))*=(M%* (modn)= M (mod n
E(D(M)) = (D(M)) = (M%* (modn)=M* (mod n)
and
Med = MF9MWHL (mod n) (for some integer k).
OO
O0—O



O0—0O._
From (3) we see that for all M such that p does not divide M

MP~1 =1 (mod p)
and since (p — 1) divides ¢(n)
M*ESTL = A (mod p).

This is trivially true when M = 0 (mod p), so that this equality actually holds for
all M. Arguing similarly for ¢ yields

MFEMF = A (mod q) .
Together these last two equations imply that for all M,
Mt = MFT = M (mod n).

This implies (1) and (2) for all M,;0 < M < n. Therefore £ and D are inverse
permutations. (We thank Rich Schroeppel for suggesting the above improved version
of the authors’ previous proof.)

Oo———0
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MM
Computing M*¢ (mod n) requires at most 2 - log,(e) multiplications and 2 - log,(e)

divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let epep_1...e1e9 be the binary representation of e.
Step 2. Set the variable C' to 1.
Step 3. Repeat steps 3a and 3b for:e =k, k—1,...,0:
Step 3a. Set C' to the remainder of C? when divided by n.
Step 3b. If ¢; = 1, then set C' to the remainder of C'- M when divided by n.
Step 4. Halt. Now C is the encrypted form of M.

This procedure is called “exponentiation by repeated squaring and multiplication.”
This procedure is half as good as the best; more efficient procedures are known.
Knuth [3] studies this problem in detail.

OO

Oo———0



Each user must (privately) choose two large random numbers p and ¢ to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p - ¢. (Remember that n, but not
p or ¢, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and ¢, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem |[7], about
(In10*Y) /2 = 115 numbers will be tested before a prime is found.

\ A

O0—0O (About 665 bits, 2048 or 4096 are standard today)



MM
To test a large number b for primality we recommend the elegant “probabilistic”

algorithm due to Solovay and Strassen [12]. It picks a random number a from a
uniform distribution on {1,...,b— 1}, and tests whether

ged(a,b) = 1 and J(a,b) = a® /2 (mod b), (6)



To gain additional protection against sophisticated factoring algorithms, p and ¢
should differ in length by a few digits, both (p — 1) and (¢ — 1) should contain large
prime factors, and ged(p — 1, — 1) should be small. The latter condition is easily
checked.

ensuring that (u — 1) also has a large prime factor.
A\
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C How to Choose d

It is very easy to choose a number d which is relatively prime to ¢(n). For example,
any prime number greater than max(p,q) will do. It is important that d should be
chosen from a large enough set so that a cryptanalyst cannot find it by direct search.

D How to Compute ¢ from d and ¢(n)

o0—0 . .
OEO Fuclid’s algorithm

If e turns out to be less than log,(n), start over by choosing another value of d.
This guarantees that every encrypted message (except M = 0 or M = 1) undergoes
some “wrap-around” (reduction modulo n) .

OO
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Takeaways so far

 RSA let’s you do encryption, signatures

* Even “textbook RSA” is not trivial to implement

« “Textbook RSA”, as presented in the paper and in most
textbooks, is not secure against chosen ciphertext attacks
and other types of attacks.
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OO  The era of “electronic mail” [10] may soon be upon us;

OO0

:O—O:
Oo—=O0

encryption keys. (We assume that the intruder cannot modify or insert messages into
the channel.) Ralph Merkle has developed another solution [5] to this problem.

( A public-key cryptosystem can be used to “bootstrap” into a standard encryption
scheme such as the NBS method. Once secure communications have been established,
the first message transmitted can be a key to use in the NBS scheme to encode all

¢ following messages. This may be desirable if encryption with our method is slower
than with the standard scheme. (The NBS scheme is probably somewhat faster if
special-purpose hardware encryption devices are used; our scheme may be faster on
a general-purpose computer since multiprecision arithmetic operations are simpler to
implement than complicated bit manipulations.)

0,0

OO
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200-digit message M

logz[lozm) = about 665 bits



P N o N

Since no techniques exist to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break it. The NBS standard
was “certified” this way; seventeen man-years at IBM were spent fruitlessly trying to
break that scheme. Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure. (Actually there is some controversy

concerning the security of the NBS method [2].)
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0,0
How can n be factored using ¢(n)? First, (p + ¢) is obtained from n and ¢(n) =

n—(p+q)+1. Then (p— q) is the square root of (p+ q)? — 4n. Finally, ¢ is half the
difference of (p + ¢) and (p — q).

Therefore breaking our system by computing ¢(n) is no easier than breaking our

system by factoring n. (SHSNRASHbECOMpOSIEENA (N SNAIoCoMpiie
if n is prime.)

OO

~\ N\

A knowledge of d enables n to be factored as follows. Once a cryptanalyst knows d
he can calculate e - d — 1, which is a multiple of ¢(n). Miller [6] has shown that n can
be factored using any multiple of ¢(n). Therefore if n is large a cryptanalyst should
not be able to determine d any easier than he can factor n.

~0—O"
0,0
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D Computing D in Some Other Way

Although this problem of “computing e-th roots modulo n without factoring n” is
not a well-known difficult problem like factoring, we feel reasonably confident that it
is computationally intractable. It may be possible to prove that any general method
of breaking our scheme yields an efficient factoring algorithm. This would establish
that any way of breaking our scheme must be as difficult as factoring. We have not
been able to prove this conjecture, however.

Our method should be certified by having the above conjecture of intractability
withstand a concerted attempt to disprove it. The reader is challenged to find a way
to “break” our method.






More takeaways

RSA, to some extent, depends on “we’ve tried to crack it for a long time, but
couldn’t”, as do DES, AES, etc.

« But the paper also includes some, e.g., reduction proofs
Textbook RSA is not good enough

Some differences with Diffie-Hellman

Threat model
RSA s tricky to implement in a secure way
Composite number
« Who gets to contribute randomness?
Similarities?
Both are broken by quantum computers



RSA in real cryptosystems

* What we just learned, and read about in the paper, Is
called “Textbook RSA”

* Not secure and should not be used (padding is strictly
necessary in real schemes)

« Padding oracle attacks (same idea as for CBC)
« Side channels



Side notes

GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

In my own research (e.g., looking for amateurish crypto
In Android apps) using RSA for key distribution is often a
red flag

« An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)



Okay to grab the RSA paper and start coding?
Or just use a textbook, i.e., textbook RSA?



“o—o-  Let C be the RSA encryption of 128-bit AES key k
o0  with RSA public key (n, e). Thus, we have

o C =k (mod n)
95—~ Now let Cj, be the RSA encryption of the AES key
0—0 ky = 2%k
o0 lLe., k bitshifted to the left by b bits. Thus, we have

Cb — kbe (IIlOd n)



Cyr = kp©

(mod n)

0
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= mo d ?’1)
2EE d n) (mo
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od n)
od n)(2% mod
= (k* m
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WUP requests

* Full attack is at:

* The other issues in that paper and previous papers have
been fixed, but they still appear to be using textbook
RSA


https://arxiv.org/pdf/1802.03367.pdf

Coming up...

WUP request attack on RSA in more detalil
Optimal Assymetric Encryption Padding (OAEP)
« To prevent padding oracle attacks on RSA
Random oracle model

Formalizing attacks

« Ciphertext only, known plaintext, chosen plaintext
* Chosen ciphertext
« CPA, CPA2, CCA, CCA2 (2 = adaptive)



RSA padding is not optional

« Security of RSA completely breaks down without
padding

« Optimal Assymetric Encryption Padding (OAEP) solves
this problem

Random oracle model

36



BAT (Baidu Alibaba Tencent) Browsers

S

o)

' DU
Baidu Browser UC Browser QQ Browser
(BERTER) (UCH5z28) (QQFE2R)
https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf 37



Success Stories

" UCWeb mobile browser identification
" Discovered by GCHQ analyst during DSD workshop

* Chinese mobile web browser — leaks IMSI, MSISDN,
IMEI and device characteristics

https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf
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O’O https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf 39



" Led to discovery of active comms channel from|jjj | NI

(S/SIW/REL TO USA, FVEY) The CONVERGENCE team helped discover an

active communication channel originating from hat is associated

s they are known within th ierarchy area of responsibility is
for covert activities in Europe, North America, and South America. The
customer leveraged a Convergence Discovery capability that
enabled the discovery of a covert channel associated with smart phone
browser activity in passive collection. The covert channel originates from
users who use UCBrowser (mobile phone compact web browser). The
covert channel leaks the IMSI, MSISDN, Device Characteristics, and
IMEI back to server(s) in nitial
investigation has determined that perhaps malware can be associated when
the covert channel is esrabﬁshediaved exfil activity identifies
SIGINT opportunity where potentially none may have existed before. Target
offices that have access to X-KEYSCQRE ¢an search within this type of

divmdllim b aooad o bl il VARACS] e IRAFT b aladc cscanlin e B camcmdh cncam o o mm

https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf




bluesky.1.25.1.1.7%?cache=3766412000&ka=&kb=e2e63e260805aea910elc2cel2b05211&
kc=3b5d366db90blb60e22260a0278331£f8v0000002e9952d46&firstpid=0501&bid=800&ve
r=5.5.10106.5&type=1&ssl=1&bandwidth=29.63&target ip=64.106.20.27&redirect_s
tart=0&redirect duration=0&dns start=0&dns_duration=218&connect_ start=218&co
nnect duration=25l&érequest start=469&request duration=9l6&response start=138
5&response duration=1l&dom start=1386&dom duration=268&dom interactive=234&do
m_content load start=1420&dom content load duration=0&load event start=1654&
load event duration=26&t0=1385&t1=1719&t2=1719&t3=1420&total_ requests=2&requ
ests_via network=2&cloud acceleration_enabled=0&average of request duration=
BG9&average_qf_tE_duraticn=359&privatg_data=hnst=www.cs.unm.edulurlzhttps:f!
www.cs.unm.edu/~jeffk/&lang=zh-CN

https://lwww.usenix.net/sites/default/files/conference/protected-files/focil6_slides_knockel.pdf 41



m90.... O.+.y.]l¢=punlii<.06+DUxh..Ej.n]B?;..u.04..70.p PP .0"c.100.$ A.Um. .
@.0N . $"gE” ; <kpB8&ld:. XgEC\Oin...U5.F|¢?i.23..Im5°.8&6....1+0% 7a.’ (p/mXa¥nAS...
Og. .Y.“tE@3'gy.j...BtE.A0OBx&d.U.8 i%i]iuI3Ne.02;G.0| . 2. ApJEN.+V.huU.E[~@.SG"
IbLp N! .Pf*4eaa.c¢ls .EfdD>0z+v\6K.AD¥9.yE~*...¥I5.b.st'U.0 ®.dAE[AFA.IF?L. .yé
th=.zdé-;&=\nL. .@00%. . [+EOL. B!!'alr0.0..qJ®\9U&. . Y. vk ‘2Ng-DUSA . 6%<qgE.u. '¥.
®4.20.0%.<n.0.]Juuz.g.¢.A. .U0'4a (Wa0.C.ya#:J+YA9 .pn3.:116f~.XE.£.8--18.DCT.5/;
*@He~0P.EJ .LOGqQ.. ..009:.'UiHEG..dLg..I..x8Jn,a0+/.©.E2.8..0N....|.E8.2.p
.9 F.8 .06aE0.68Xi.10>W.§.X2A.c..r, {.I°~.+1i.y{.caA. .N®U, uR%.EsupiEcf.7u&.n..
iHxE < P.0Z8uN¥l.».mu.E. 72I9,Y .Tj&xyo£&.; &.a.y++...B..%.u[...).riw,;.eQ)W
.e]l. :N60U.856m-110} ;60. .@*b\..i4%'Elq,AQP&. .i sO..*....9iNE¢mEITB&A . .y+r.-§5.
.g$.) .Sy5Bi.Q.X6u.I*nEKO.8M . "t» «.ZA3mAGIO0

https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf 42



State of BAT Browsers circa 2016

« UCBrowser and Baidu Browser used purely symmetric crypto
* Reverse engineer APK, passively decrypt on the wire

* QQ Browser used a 128-bit RSA modulus

* Factor in <3 seconds with Wolfram Alpha, passively decrypt on
the wire

 Some other details not relevant to this lecture

* Peculiar TEA-based algorithm for all three
* Insecure update mechanisms

Unpublished research 2023: Not much has changed.
43



O—O

# Public ke§
E, N = .

# Prime factors of N, found via
# http://www.wolframalpha.com/input/?i=factor+245406417573740884710047745869965023463

def egcd(a, b):
# Extended Euclidian Algorithm
Xy, uU,v = N '
while a ! :
q, r b//a, b%a
m, n =X - U*q, y - V*Q
b,a, x,y, u,v = a,r, u,v, m,n
gcd = b
return gcd, X, vy

def find_d(p, q, e):
phi = (p - 1) » (q - 1)
gcd, d, _ = egcd(e, phi)

return d
‘—.




QQ Browser

WUP requests

« >10% of the apps in the Tencent app store make WUP
requests

« Used to send telemetry, etc., back to the server, request and
download updates, etc.

45



QQ Browser

Data leaks across Windows & Android versions

Type Data Point

Pl Machine hostname, Gateway MAC address, Hard drive serial
number, Windows user security identifier, IMEI, IMSI, Android
ID, QQ username, WiFi MAC address

Activity Search terms, Full HTTP(S) URLs

Location In-range WiFi access points, Active WiFi access point
https://www.usenix.net/sites/default/files/conference/protected-files/focil6_slides knockel.pdf 46



Basic protocol for WUP request encryption

Client chooses a “random” 128-bit AES key
« Session key
Client encrypts that with the server’s RSA public key
Using textbook RSA
Client encrypts the WUP request with the AES session key

Client appends the encrypted WUP request to the RSA-
encrypted AES session key

Sends it to the server

47



WUP server

Receives the request from the client
Uses its private key to decrypt the AES session key
Uses the AES session key to decrypt the WUP request

If decryption succeeds, responds with a WUP response
that is encrypted with the same AES key

48



Assumptions

 RSA modulus is 1024 bits
* Versions <£6.3.0.1920 had 128 bits
* Entropy pool for randomness, and not ASCllI-ified

« Versions <6.5.0.2170 used srand(time())
» Versions <6.3.0.1920 ASClII-ified the key (<253 entropy)

* Textbook RSA
* Versions >6.5.0.2170 might do padding? (can’t remember)

49



try:
milliseconds _base = int(sys.argv[1], 0) =
encrypted _key = int(sys.argv[2], )
except ValueError:
pass

while True:
delta = 1 >>
if 1 & 1:
delta = ~delta
milliseconds = milliseconds_base + delta
r = Random(milliseconds)
key bytes = r.next _bytes(16)

key = int.from_bytes(key bytes, )
if gqqrsa.encrypt(key) == encrypted _key:
break
1 +=
if 1 % == 0;:
sys.stderr.write( \n" % (1 //
print( % (1 + 1))
print( % milliseconds)

print( % key bytes)



Random random = new Random(System.currentTimeMillis());

byte[] bArr = new byte[8];

byte[] bArr2 = new byte[8];

random.nextBytes(bArr);

random.nextBytes(bArr2);

return new SecretKeySpec(ByteUtils.mergeByteData(bArr, bArr2), "AES");

SecureRandom secureRandom = new SecureRandom();

byte[] bArr = new byte[8];

byte[] bArr2 = new byte[8],

secureRandom.nextBytes(bArr);

secureRandom.nextBytes(bArr2);

return new MttWupToken(ByteUtils.mergeByteData(bArr, bArr2), this);

51



Padding oracle attack

Eve eavesdrops a WUP request from Alice to Bob

Eve replays slightly modified versions of the WUP
request’'s RSA ciphertext (chosen ciphertext attack),
learning one bit at a time of the RSA plaintext (the AES
session key)

Once the AES session key is recovered, Eve can
decrypt Alice’s WUP request

52



https://en.wikipedia.org/wiki/
Daniel Bleichenbacher

* Bleichenbacher-style attack published in 1998

» Chosen ciphertext attack
« Padding oracle attack

* 0x00 0x02 [non-zero bytes] 0x00 [M]

217 to 2% probability a random ciphertext has this format
when decrypted with RSA

Takes a few million connections

53


https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5
https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5

A much simpler attack (on QQ Browser)

Not necessary at the time we discovered it
May or may not be applicable today
Good for pedagogical purposes

54


https://arxiv.org/abs/1802.03367

“o—o-  Let C be the RSA encryption of 128-bit AES key k
o0  with RSA public key (n, e). Thus, we have

o C =k (mod n)
95—~ Now let Cj, be the RSA encryption of the AES key
0—0 ky = 2%k
o0 lLe., k bitshifted to the left by b bits. Thus, we have

Cb — kbe (IIlOd n)



Cyr = kp©

(mod n)

0
Cb
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2EE d n) (mo
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= (k* m
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(mod n)

(mod n)

(mod n)



key = 0
for 1 in range(128):
shift = 127 - 1
encrypted_key shifted = qqrsa.shift_encrypted _message(encrypted_key, shi

satisflied = False
key >>= 1
for b in (0, 1):
key |= (b << 127)
test _key = key.to_bytes(16, 'big')
try:
headers, body = make request(test_key, encrypted key shifted)
except Exception:
traceback.print_exc()
else:
satisfied = True
print(format(key >> shift, '0%db' % (1 + 1)))
break
1f not satisfied:
sys.stderr.write( 'error recovering key\n')
sys.exit(1)
print(repr(key))



Suppose the client whose communications we want to decrypt encrypts the following 128-bit AES key
O—O with 1024-bit RSA and sends it to the server:

OO 1011000010010110011101111011101100100010111111001110101011110011
O—O 0000000011100100101111001001010100100011101101010000101110111011

O O 58



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
10110000100101100111011110111011001000101TT111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011




o—O This shows what the server sees as the RSA plaintext after it decrypts the ciphertext we sent it,
O O which we are trying to trick the server into leaking bits of to us. So, we as the attacker have recorded ¢ by
OO eavesdropping on the client and server’s communications over the Internet. But without the private key, d,
00 we don’t know what m (the green part, which is the AES key to decrypt the rest of the message) is. Let’s

O0—O explore what happens if we open our own connection to the server, and as our ciphertext we send ¢ x 2°,
(O————) The server will decrypt that into the following plaintext:

O O 60



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000001
0110000100101100111011110111011001000101111110011101010111100110
0000000111001001011110010010101001000111011010100001011101110110




So, we know how to double plaintexts by manipulating ciphertexts. What if we double it more than
once? What if we do it 16 times, by sending ¢ x 21¢ as out ciphertext. When we multiplied the plaintext
by 2 above, we effectively bit shifted the AES key by 1. Now we’re multiplying the plaintext by 216, which
is the equivalent of bit-shifting to the left 16 times:

62



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000101 1000010010110
0111011110111011001000101111110011101010111100110000000011100100
10111100100101010010001110110101000010111011101 10000000000000000

0o



C X 2127@
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0101100001001011001110111101110110010001011111100111010101111001
1000000001110010010111100100101010010001110110101000010111011101
1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

VO



Now, we’ve finally figured out step one of our attack. By sending ¢ x 2127¢ as our ciphertext, we’ve

OO forced the server to encrypt what it sends back to us with one of two AES keys, either...
o—oO

O—O 0000000000000000000000000000000000000000000000000000000000000000
OO 0000000000000000000000000000000000000000000000000000000000000000

C C ...0T...

o——=0
O0—O 1000000000000000000000000000000000000000000000000000000000000000
OO0 0000000000000000000000000000000000000000000000000000000000000000
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0010110000100101100ITI01T110111011001000101111110011101010111100
1100000000111001001011110010010101001000111011010100001011101110
[ 100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000




So now there are two bits in our AES key with the server that we don’t know for sure are zeroes, but
we don’t want to try all four possibilities because that’s not going to be efficient going forward. We already
know the bit in blue from step 1, so really there are only two possibilities of keys to try: Either...

0100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

...0rL...

1100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

21256

So then, for step 3, we would send ¢ x as our ciphertext, and the server would decrypt:
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0001011000010010110011101111011101100100010111111001110101011110
011000000001 1100100101111001001010100100011101101010000101110111
0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000




...OL...

0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

1 110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
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By the 128" step...
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011




C§}<%: 0011000010010110011101111011101100100010111111001110101011110011
O—<C 0000000011100100101111001001010100100011101101010000101110111011

OO  or.

o—O 1011000010010110011101111011101100100010111111001110101011110011
O—O 0000000011100100101111001001010100100011101101010000101110111011
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key = 0
for 1 in range(128):
shift = 127 - 1
encrypted_key shifted = qqrsa.shift_encrypted _message(encrypted_key, shi

satisflied = False
key >>= 1
for b in (0, 1):
key |= (b << 127)
test _key = key.to_bytes(16, 'big')
try:
headers, body = make request(test_key, encrypted key shifted)
except Exception:
traceback.print_exc()
else:
satisfied = True
print(format(key >> shift, '0%db' % (1 + 1)))
break
1f not satisfied:
sys.stderr.write( 'error recovering key\n')
sys.exit(1)
print(repr(key))



Offline attacks are possible for smaller key sizes

BonEH, D., Joux, A., AND NGUYEN, P. Q. Why
textbook ElGamal and RSA encryption are inse-
cure. fn the Proceedings of Advances in Cryptology
— ASTACRYPT 2000: 6th International Conference
on the Theory and Application of Cryptology and
Information Security, Kvoto, Japan, December 3-

7, 2000 (20001, 30-43.

Ms*

M;°

(mod N)
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QQ’s padding is vulnerable

* Padding scheme is “ignore all but the lowest order 128
bits”

» Other padding schemes that are more sophisticated
could still be vulnerable

How do we know if a padding scheme is good enough?
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A preliminary version of this paper appeared in Advances in Cryptology — Eurocrypt 94 Proceed-
ings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed., Springer-Verlag, 1994,

Optimal Asymmetric Encryption —
How to Encrypt with RSA

MiHIR BELLARE® PHILLIP ROGAWAYT

November 19, 1995

https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf 77



00 Seed Hash(L) O?F,"S')OO 01 message N
DB
v
—— MeF ——(H  OAEP
) 4
C)« MGF <
\ 4 \ 4 \ 4
00 'maskedSeed maskedDB

.
encoded message EM

https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg
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Good enough?

* Proven to be IND-CCAZ2 secure (with some
assumptions)

* Reduction proof
* What this means in practice:

« If 'm using RSA-OAEP and you perform an adaptive chosen
ciphertext attack against my scheme, give me the source
code for your attack and I'll use it to factor large integers
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* In the olden days, in the beforetime, in the long long ago...

Ciphertext only (Viginere cipher cracking), known plaintext
(linear cryptanalysis, Enigma), chosen plaintext (differential

What is IND-CCA2?

cryptanalysis)
* Now threat models are very complicated, but in a nutshell:

IND-CPA — Indistinguishability under chosen plaintext attack

IND-CCA — Indistinguishability under chosen ciphertext attack
IND-CCAZ2 — Indistinguishability under chose ciphertext attack

(adaptive)
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IND-CCAZ2 in a nutshell

I'll encrypt or decrypt as many plaintexts or ciphertexts as
you like

plaintext/ciphertext pairs

You give me two plaintexts, I'll flip a coin (heads or tails) and
encrypt one of them (you don’t know which) to give you C

In polynomial time, you can do more encryption and
decryption, just not for C

You guess my coin flip (heads or tails)
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If you can’t win with >50% probability

* You can’'t break my scheme (e.g., OAEP) with an
adaptive chosen ciphertext attack
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If you can win with >50% probability

You've potentially broken my scheme with an adaptive
chosen ciphertext attack

Let’s win the Turing award together, by publishing a
paper showing how to factor large integers with a
classical computer in polynomial time

* Or, build a cybercrime cartel together?
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If people ignore the science of cryptography
(e.g., “who needs semantic security?”’), but their
schemes have not been broke, should you trust
those schemes?
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Telegram

a new era of messaging
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MTProto encryption
to be encrypted
shared key (auth_key) salt session_id load * padding
persistent, generated via DH | B4bit G4bit 0-15 bytes
Payload always contains time,
msg_key length and sequence number
128-Bit to be checked by the receiving
{ party after decryption,
KDF
multiple SHA-1
L
AES key y
256-8“ /_-
> AES IGE Encryption
AES IGE IV ¥
256-Bit
\4 L
auth_key_id msg_key
| 64-Bit 128-Bit SIEIVELELES

!

embedded into transport protocol (TCP, HTTP, ..)

NB: After decryption, msg_key MUST be equal to SHA-1 of data thus obtained.

https://core.telegram.org/img/mtproto_encryption.png



MTProto 2.0, part Il

Secret chats (end-to-end encryption)

Length Payload type Random bytes Layer IN_seq_no OUT_seq_no
32-Bit 32-Bit min 128-Bit 32-Bit 32-Bit 32-Bit
Message type Serialized message object Padding
32-Bit Variable length 12-1024 bytes
Secret Chat key Note:
generated via DH, periodically Payload contains length
) regeneratle:I for PFS . and sequence numbers to be
checked by the receiving party
after decryption.
SHA-256
KDF
SHA-256 P by
AES key -
256-Bit
AES IGE Encryption
AES IGE IV
256-Bit

key_fingerprint msg key
64-Bit 128-Bit Encrypted data

embedded into an outer layer of client-server (cloud) MTProto encryption,
then into the transport protocol (TCP, HTTP, ..)

Important: After decryption, the receiver must check that
msg_key = SHA-256(fragment of the secret chat key + decrypted data)

https://core.telegram.org/api/end-to-end
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Some “attacks” and criticisms...

rd1]tctps://(:aislab.kaist.ac.kr/publication/paper_fiIes/2017/SCISl7_JU.p

https://unhandledexpression.com/cryﬁto/generallsecurity/2013/12/1
7/telegram-stand-back-we-know-maths.html

https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cr
yptanalysis-of-the-Telegram-messaging-protocol _master-thesis.pdf

td1]tctps://(:aislab.kaist.ac.kr/publication/paper_fiIes/2017/SCISl7_JU.p

https://mtpsym.github.io/
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf
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https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://unhandledexpression.com/crypto/general/security/2013/12/17/telegram-stand-back-we-know-maths.html
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://enos.itcollege.ee/~edmund/materials/Telegram/A-practical-cryptanalysis-of-the-Telegram-messaging-protocol_master-thesis.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://caislab.kaist.ac.kr/publication/paper_files/2017/SCIS17_JU.pdf
https://mtpsym.github.io/
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/60/slides.pdf

Takeaways

Padding is important
« Cryptography is a science

You don’t always have to settle for “we tried to break it
really hard for a long time and couldn’t”

« See, e.g., the reduction proofs in both RSA and OAEP

“We tried to break it really hard for a long time and
couldn’t” is still valuable, though
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Prepare for next lecture (Canvas discussion)

Go to a few of your favorite websites

If they don’t support HTTPS, say so in Canvas

* They really should support HTTPS, I'd be interested to know major websites
that still don't

If they do support HTTPS, check the chain of trust and the public key’s
exponent using your browser’s ability to inspect a TLS cert

* Is e =0x10001? (65537 in decimal)
* Domain Validation (DV) or something else?

See if you can find the entire list of trusted Certificate Authorities (CAS)
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