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Our TCP Attack

• Discovered a subtle TCP side channel vulnerability in Linux 3.6+
(CVE-2016-5696) 

• Given any two arbitrary hosts on the internet, blind attacker can infer: 
• Existence of communication 
• Sequence number 
• ACK number 

• Can be used towards: 
• TCP connection termination attack 
• Malicious data injection attack
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Threat Model

• Consists of: 
• An arbitrary pair of client and server 
• A blind off-path attacker(no eavesdropping capability) 

• Assumption: the attacker can send spoofed packets with the victim 
(client or server)’s IP address
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Background
• Traditional blind in-window attacks (brute force):  
• Connection termination & data injection attack 
• Success requirement (spoofed packet with): 
• Known 4-tuple <src IP, dst IP, src port, dst port> 
• Guessed SEQ # is in-window (recv window) 

• RFC 5961 (Aug 2010) 
• Mitigate blind in-window attacks 
• Modification of receiving scheme 
• SYN receiving scheme 
• RST receiving scheme 
• Data receiving scheme 

• Ironically, Linux implementation introduced the side channel vulnerability

7



Yue CaoUSENIX Security 2016

SYN Receiving Scheme
• Before RFC 5961: blind RST Attack by sending spoofed SYN packet 
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RST Receiving Scheme
• Before RFC 5961: blind RST Attack by sending spoofed RST packet 
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Data Receiving Scheme
• Before RFC 5961: blind Data Injection Attack by injecting spoofed DATA packet 
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Why Does This Vulnerability Exist? 

• RFC 5961:  a much stricter check on incoming packets 
• Challenge ACK is triggered in a established connection: 
• SYN packet with correct 4-tuples <srcIP, dstIP, srcPort, dstPort> (any SEQ #) 

• RST packet with 4-tuples, in-window SEQ # 
• Data packet with 4-tuples, in-window SEQ #, old ACK #(in challenge window) 
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Side Channel Vulnerability

• sysctl_tcp_challenge_ack_limit: implemented in Linux 3.6+ 
• Global limit of all challenge ACK per sec, shared across all connections 
• Default value: 100 (reset per second)
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Exploit The Vulnerability

• Guess-then-Check method: 
• Send spoofed packets with guessed values 
• Example: to guess correct client-port number 
• If it’s a correct guess:
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Guess-Then-Check Method
• Send spoofed packets with guessed values 
• Example: to guess correct client-port number  
• If it’s a wrong guess:
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Guess-Then-Check Method

• Challenge: expensive time cost 
• N: maximum spoofed probing packets in one second 
• Bandwidth dependent
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Guess-Then-Check Method

• Same process works for guessing SEQ 
number and ACK number 

• Correct guess: 
• SEQ number 
• ACK number 
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Guess-Then-Check Method

• Guess is correct when: 
• Src Port 
• SEQ number 
• ACK number 

• Traditional  brute-force attack: 104•109•109=1022 different combinations 
• Our attack: Time cost is additive instead of multiplicative 
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RST packet with correct 4-tuples, SEQ # in-window
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Possible to finish within 1 minute!



Yue CaoUSENIX Security 2016

Optimizations

• Binary-style search 
• Reduce the number of probing rounds 
• Multi-bin search 
• Further improvement 
• Redundancy-encoded search 
• Account for packet loss
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Binary-style Search
• Send spoofed packet for all the ports in the 1st half range. 
• Narrow down the search space by half and proceed to the next round
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……

If Challenge ACK # ==100If Challenge ACK # < 100

If Challenge ACK # ==100If Challenge ACK # < 100

……

Binary Search Algorithm
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Attack Overview

• Given client and server, we already know: 
• Src IP address: client IP 
• Dst IP address: server IP 
• Dst Port number: service at server(e.g. 80)
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Time Synchronization

• Challenge: 
• Challenge ACK count resets each second 
• All the spoofed and non-spoofed packets 

MUST be within the same 1-second 
interval at server 

• Our own method: 
• A time synchronization strategy based on 

this side channel
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………….
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Inference Of Possible TCP Connection
• Given src IP, dst IP and expected dst port: 
• To see if client opened a port 

• To infer src port: 
• 1. Throughout all port number[probe N ports in 1 sec] 

• To infer connection exists or not  
• 2. Find exact correct port number[Binary/Multi-bin search] 

• To be used for termination attacker or hijacking attack
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Src Port #

Step1: Identify Port Range  

Step2: Identify Exact Port 

Src Port #

Range size: N
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TCP Connection Termination Attack
• Given 4-tuples: src IP, dst IP, src Port, dst Port,  
• To send a RST packet with exactly matched SEQ # 

• Optimization: locate receive window first, then specific SEQ 
number
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RST SEQ 
Number 
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TCP Hijacking Attack
• Challenge: a RST packet with correct SYN packet will terminate the connection 
• Main idea (take a detour):  
• 1. Locate rough SEQ # in-window (same as before) 
• 2. Use Data-based probing to infer a rough ACK # in window 
• 3. Use Data-based probing to infer exact SEQ #
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Evaluation:  Time Cost
• Time Micro-analysis: 
• Time cost differences in each step between Binary search and Multi-bin search 
• Time cost vs bandwidth
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Case Study: Termination Attack

• Setting: client and attacker at different part of campus 
• EC2: 8 different regions 
• Success rate: 96% 
• Attack time: ~42s
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Evaluation: Hijacking Attack

• Setting: client and attacker at different part of campus 
• Tor: 8 different regions 
• Success rate: 89% 
• Attack time: ~61s 
•  
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Evaluation: Hijacking Attack

• Target: long-lived TCP connection 
without using SSL/TLS 
• news website 
• advertisements connection 

• Behavior at USAToday: 
• Client refreshes data periodically(30s) 
• Requests may vary during time
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Evaluation: Hijacking Attack

• Hijacking: the usatoday.com website 
• Desynchronization[1] 
• Injection
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[1]ABRAMOV, R., AND HERZBERG, A. Tcp ack storm dos attacks. Journal Computers and Security (2013).   
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Evaluation: Hijacking Attack

• Hijacking: the usatoday.com website 

• Success rate of inferring the correct sequence and ACK number: 90% 
• Success rate of injecting the phishing window: 70% 
• Average Time Cost: 81.05s (with BW: 5000 pkt/s)
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Defense & Conclusion

• Our defense scheme: 
• Add random noise to the channel (global challenge ACK rate limit) 
• Eliminate the side channel  
• Set sysctl_tcp_challenge_ack_limit to extremly large value[temporary] 

• Conclusion 
• Discovered a subtle yet critical flaw in the design and implementation of TCP in 

Linux 3.6+ 
• Demonstrated blind off-path TCP attacks within ~1 minute 
• Proposed defense schemes
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Patched in Linux kernel 4.7 in July 2016 
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Q	  &	  A
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