
Yue Cao

Off-‐Path	 TCP	 Exploits:	 Global	 Rate	 Limit	
Considered	 Dangerous

Yue	 Cao,	 Zhiyun	 Qian,	 Zhongjie	 Wang,	 Tuan	 Dao,	
Srikanth	 Krishnamurthy,	 Lisa	 M.	 Marvel†

USENIX Security 2016 1

†

Yue CaoUSENIX Security 2016

Our TCP Attack

• Discovered a subtle TCP side channel vulnerability in Linux 3.6+
(CVE-2016-5696)

• Given any two arbitrary hosts on the internet, blind attacker can infer:
• Existence of communication
• Sequence number
• ACK number

• Can be used towards:
• TCP connection termination attack
• Malicious data injection attack

2

Yue CaoUSENIX Security 2016

Outline

• Threat Model
• Background
• Vulnerability
• Our Attacks
• Evaluation
• Defense & Conclusion

3

Yue CaoUSENIX Security 2016

Outline

• Threat Model
• Background
• Vulnerability
• Our Attack
• Evaluation
• Defense & Conclusion

4

Yue CaoUSENIX Security 2016

Threat Model

• Consists of:
• An arbitrary pair of client and server
• A blind off-path attacker(no eavesdropping capability)

• Assumption: the attacker can send spoofed packets with the victim
(client or server)’s IP address

5

Client Server

Attacker

Threat Model

Yue CaoUSENIX Security 2016

Outline

• Thread Model
• Background
• History of RFC 5961
• 3 modifications in RFC 5961
• Why does this vulnerability exist?
• Vulnerability
• Our Attack
• Evaluation
• Defense & Conclusion

6

Yue CaoUSENIX Security 2016

Background
• Traditional blind in-window attacks (brute force):
• Connection termination & data injection attack
• Success requirement (spoofed packet with):
• Known 4-tuple <src IP, dst IP, src port, dst port>
• Guessed SEQ # is in-window (recv window)

• RFC 5961 (Aug 2010)
• Mitigate blind in-window attacks
• Modification of receiving scheme
• SYN receiving scheme
• RST receiving scheme
• Data receiving scheme

• Ironically, Linux implementation introduced the side channel vulnerability

7

Yue CaoUSENIX Security 2016

SYN Receiving Scheme
• Before RFC 5961: blind RST Attack by sending spoofed SYN packet

8

Sender Receiver

SYN

Out-of-Window ACK back

In_Window Reset Connection

After RFC 5961

Challenge ACK

Challenge ACK

RCV.NXT

RCV.NXT+RCV.WND

RCV_Window

SEQ # Space

Before RFC 5961SEQ #:

Challenge ACK: ask sender to confirm if it indeed restarted

Yue CaoUSENIX Security 2016

RST Receiving Scheme
• Before RFC 5961: blind RST Attack by sending spoofed RST packet

9

RST

Out-of-Window Drop the Packet

In-Window Reset Connection

After RFC 5961

Exactly match

Drop the Packet

Challenge ACK

Reset Connection

Sender Receiver

RCV.NXT

RCV.NXT+RCV.WND

RCV_Window

SEQ # Space

Before RFC 5961SEQ #:
0/4G

Challenge ACK: tell sender to confirm if it indeed terminated
the connection

Yue CaoUSENIX Security 2016

Data Receiving Scheme
• Before RFC 5961: blind Data Injection Attack by injecting spoofed DATA packet

10

In-RCV_Window —> Check ACK #

After RFC 5961

In-Accpt_Window Process Data

Out-of-Window Drop

Challenge Window
(Old ACK) Challenge ACK

Drop

Process Data
SND.NXT

SND.UNA

Accept
Window

SND.UNA-2G

Challenge
Window

RCV.NXT

RCV.NXT+RCV.WND

RCV_Window

SEQ # Space

ACK # Space

Before RFC 5961

SEQ #:

ACK #:

Yue CaoUSENIX Security 2016

Why Does This Vulnerability Exist?

• RFC 5961: a much stricter check on incoming packets
• Challenge ACK is triggered in a established connection:
• SYN packet with correct 4-tuples <srcIP, dstIP, srcPort, dstPort> (any SEQ #)

• RST packet with 4-tuples, in-window SEQ #
• Data packet with 4-tuples, in-window SEQ #, old ACK #(in challenge window)

11

Port number SEQ number ACK number

SYN-triggered
challenge ACK

RST-triggered
challenge ACK

ACK-triggered
challenge ACK

Rate limit of
challenge ACK
(recommended
by RFC 5961)

Linux followed faithfully

Side-Channel Side-Channel Side-Channel

SYN
RST
Data

Yue CaoUSENIX Security 2016

Outline

• Thread Model
• Background
• Vulnerability
• Side channel vulnerability
• Guess-Then-Check Method
• Optimizations
• Our Attack
• Evaluation
• Defense & Conclusion

12

Yue CaoUSENIX Security 2016

Side Channel Vulnerability

• sysctl_tcp_challenge_ack_limit: implemented in Linux 3.6+
• Global limit of all challenge ACK per sec, shared across all connections
• Default value: 100 (reset per second)

13

100 RST

100 challenge ACK

Client Server

Attacker

Side-Channel Vulnerability Example

Any OS at Client!

Yue CaoUSENIX Security 2016

Exploit The Vulnerability

• Guess-then-Check method:
• Send spoofed packets with guessed values
• Example: to guess correct client-port number
• If it’s a correct guess:

14

100 RST

99 challenge ACK

1 challenge ACK

Client Server

Attacker

Spoofed SYN packets with

client’s IP
 and a guessed src port

Guess Phase

Check Phase

Port number
Inference

SEQ number
Inference

ACK number
Inference

SYN-triggered
challenge ACK

RST-triggered
challenge ACK

Data-triggered
challenge ACK

Yue CaoUSENIX Security 2016

Guess-Then-Check Method
• Send spoofed packets with guessed values
• Example: to guess correct client-port number
• If it’s a wrong guess:

15

100 RST

100 challenge ACK

Spoofed SYN packets with

client’s IP
 and a guessed src port

No challenge ACK

Client Server

Attacker

15

Yue CaoUSENIX Security 2016

Guess-Then-Check Method

• Challenge: expensive time cost
• N: maximum spoofed probing packets in one second
• Bandwidth dependent

16

Spoofed SYN packets with

client’s IP
 and guessed src port

Client Server

Attacker

16

Yue CaoUSENIX Security 2016

Guess-Then-Check Method

• Same process works for guessing SEQ
number and ACK number

• Correct guess:
• SEQ number
• ACK number

17

SEQ: Spoofed RST Packets with client’s

IP, known src port and guessed SEQ

Client
Server

Attacker

17

RST packet with correct 4-tuples, SEQ # in-window

Data packet with 4-tuples, SEQ # in-window, old ACK #

ACK: Spoofed RST packets with Client’s

IP, known src port, SEQ and guessed ACKOR

Port number
Inference

SEQ number
Inference

ACK number
Inference

SYN-triggered
challenge ACK

RST-triggered
challenge ACK

Data-triggered
challenge ACK

Yue CaoUSENIX Security 2016

Guess-Then-Check Method

• Guess is correct when:
• Src Port
• SEQ number
• ACK number

• Traditional brute-force attack: 104•109•109=1022 different combinations
• Our attack: Time cost is additive instead of multiplicative

1818

RST packet with correct 4-tuples, SEQ # in-window

Data packet with correct 4-tuples, SEQ # in-window, old ACK

SYN packet with correct 4-tuples(src Port)

Dst IP, Src IP
Dst Port

Src Port
104

SEQ number
109

ACK number
109

Possible to finish within 1 minute!

Yue CaoUSENIX Security 2016

Optimizations

• Binary-style search
• Reduce the number of probing rounds
• Multi-bin search
• Further improvement
• Redundancy-encoded search
• Account for packet loss

19

Yue CaoUSENIX Security 2016

Binary-style Search
• Send spoofed packet for all the ports in the 1st half range.
• Narrow down the search space by half and proceed to the next round

20

……

If Challenge ACK # ==100If Challenge ACK # < 100

If Challenge ACK # ==100If Challenge ACK # < 100

……

Binary Search Algorithm

Yue CaoUSENIX Security 2016

Outline

• Thread Model
• Background
• Vulnerability
• Our Attack
• Attack overview
• Time synchronization
• Inference of possible TCP connection
• TCP connection termination attack
• TCP hijacking attack
• Evaluation
• Defense & Conclusion

21

Yue CaoUSENIX Security 2016

Attack Overview

• Given client and server, we already know:
• Src IP address: client IP
• Dst IP address: server IP
• Dst Port number: service at server(e.g. 80)

22

Pre-process:
Time

Synchronization

Src Port
Inference

SEQ number
Inference

ACK number
Inference

Inference of
existence of a
TCP connection

Connection
Termination

Attack

Hijacking
Attack

Yue CaoUSENIX Security 2016

Time Synchronization

• Challenge:
• Challenge ACK count resets each second
• All the spoofed and non-spoofed packets

MUST be within the same 1-second
interval at server

• Our own method:
• A time synchronization strategy based on

this side channel

23

1 second

………….

200 time slots

RST ………….RST RST

Time synchronization example

Yue CaoUSENIX Security 2016

Inference Of Possible TCP Connection
• Given src IP, dst IP and expected dst port:
• To see if client opened a port

• To infer src port:
• 1. Throughout all port number[probe N ports in 1 sec]

• To infer connection exists or not
• 2. Find exact correct port number[Binary/Multi-bin search]

• To be used for termination attacker or hijacking attack

24

Src Port #

Step1: Identify Port Range

Step2: Identify Exact Port

Src Port #

Range size: N

Yue CaoUSENIX Security 2016

TCP Connection Termination Attack
• Given 4-tuples: src IP, dst IP, src Port, dst Port,
• To send a RST packet with exactly matched SEQ #

• Optimization: locate receive window first, then specific SEQ
number

25

RCV.NXT

RCV.NXT
+RCV.WND

RST SEQ
Number
Space RCV_Window

Step1: identify the window range Step2: narrow down to a single window Step3: probe RCV.NXT

RCV_WND RCV_WND RCV_WND

Find Receive Window
Find Exact SEQ #

SEQ # Space

Range Size: N*Win_size

Yue CaoUSENIX Security 2016

TCP Hijacking Attack
• Challenge: a RST packet with correct SYN packet will terminate the connection
• Main idea (take a detour):
• 1. Locate rough SEQ # in-window (same as before)
• 2. Use Data-based probing to infer a rough ACK # in window
• 3. Use Data-based probing to infer exact SEQ #

26

Rough SEQ #
Inference

Exact SEQ #
Inference

Termination
Attack:

Hijacking
Attack:

RST-based Probing

Data-based Probing

Rough ACK #
Inference

Exact SEQ #
Inference

X

Yue CaoUSENIX Security 2016

Outline

• Thread Model
• Background
• Vulnerability
• Our Attack
• Evaluation
• Time micro-analysis
• Case study: termination attack
• Case study: hijacking attack
• Defense & Conclusion

27

Yue CaoUSENIX Security 2016

Evaluation: Time Cost
• Time Micro-analysis:
• Time cost differences in each step between Binary search and Multi-bin search
• Time cost vs bandwidth

28
Ti

m
e(

s)

0
20
40
60
80

100
120
140
160

Attack intensity (packets/sec)
2000 4000 6000

Binary search
Multibin search

Ti
m

e
(s

)

0

10

20

30

40

Time
Synchronization

Port
Inference

Seq
Inference

ACK
Inference

Fig1. Time Breakdown
Fig2. Attack intensity impact on time to succeed

Yue CaoUSENIX Security 2016

Case Study: Termination Attack

• Setting: client and attacker at different part of campus
• EC2: 8 different regions
• Success rate: 96%
• Attack time: ~42s

29

Yue CaoUSENIX Security 2016

Evaluation: Hijacking Attack

• Setting: client and attacker at different part of campus
• Tor: 8 different regions
• Success rate: 89%
• Attack time: ~61s
•

30

Yue CaoUSENIX Security 2016

Evaluation: Hijacking Attack

• Target: long-lived TCP connection
without using SSL/TLS
• news website
• advertisements connection

• Behavior at USAToday:
• Client refreshes data periodically(30s)
• Requests may vary during time

31

Client Server

30s

30s

30s

Request
Response

Yue CaoUSENIX Security 2016

Evaluation: Hijacking Attack

• Hijacking: the usatoday.com website
• Desynchronization[1]
• Injection

32

Client ServerAttacker

30s

Request

Spoofed Request

Response

Spoofed Response

Spoofed Response

……

Spoofed Response

D
esynchronized

[1]ABRAMOV, R., AND HERZBERG, A. Tcp ack storm dos attacks. Journal Computers and Security (2013).

Yue CaoUSENIX Security 2016

Evaluation: Hijacking Attack

• Hijacking: the usatoday.com website

• Success rate of inferring the correct sequence and ACK number: 90%
• Success rate of injecting the phishing window: 70%
• Average Time Cost: 81.05s (with BW: 5000 pkt/s)

33

Yue CaoUSENIX Security 2016

Outline

• Thread Model
• Background
• Vulnerability
• Our Attack
• Evaluation
• Defense & Conclusion

34

Yue CaoUSENIX Security 2016

Defense & Conclusion

• Our defense scheme:
• Add random noise to the channel (global challenge ACK rate limit)
• Eliminate the side channel
• Set sysctl_tcp_challenge_ack_limit to extremly large value[temporary]

• Conclusion
• Discovered a subtle yet critical flaw in the design and implementation of TCP in

Linux 3.6+
• Demonstrated blind off-path TCP attacks within ~1 minute
• Proposed defense schemes

35

Patched in Linux kernel 4.7 in July 2016

Thank	 you!	
Q	 &	 A

36

Yue	 Cao	
ycao009@ucr.edu	

