AES and cipherblock chaining modes

CSE 468 Fall 2024
jedimaestro@asu.edu

Why study AES?

It's a good demonstration of principles we’ll be talking
about (e.g., confusion and diffusion).

It's the workhorse of the majority of network crypto, e.q.,
TLS

It's easy to see that AES is just substitution, permutation,
and XOR

Substitution

H
TNWWX

L L1LO WORL.
DX.

=1

Lt

ABCD
BACD
CABD
DABC

ABDC
BADC
CADB
DACB

Permutation
ACBD ACDB
BCAD BCDA
CBAD CBDA
DBAC DBCA

ADBC
BDAC
CDAB
DCAB

ADCB
BDCA
CDBA
DCBA

Bitwise XOR

001010104
100001104
=101011004

Symmetric encryption over time (review)

Handwritten notes, etc. for centuries

« Typically the algorithm was secret

1883 ... Kerckhoff’s rules

* Now we know the key should be the only secret
1975 ... DES

 Efficient in hardware, not in software

2001 ... AES

« Efficient in software, and lots of different kinds of hardware

Substitution Permutation Network

e.g., AES 128-bit blocks, (128-, 192-, 256-)bit key, (10, 12, 14) rounds

PLAINTEXT KEY
Ty Ko
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
1] [T 11 [T 1] [T 1]
P
LT T [[11 [T 11 [[T
Ty K
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
1] [T 11 [T 1] [T 1]
P
LT T [[11 [T 11 [[T
Ty K
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
LITT [T 11 [T 11 [T 1]
) K
NP,
CIPHERTEXT

AES

* Rijndael

« Joan Daemen and
Vincent Rijmen

* Very clever S-box design
that comes from Kaisa
Nyberg

 Based on finite fields
(a.k.a. Gallois fields)

Byte Sub

Shift Row

Mix Column

Add
Round
Key

Finite fields

In computer science, we like to pack things into the
natural numbers between 0 and 2" - 1

Would also be nice if things wrapped around and had
other nice mathematical properties so we could pretend
we didn’t have this limitation

Really nice if we don’t waste any of the state space, I.e.,
we use everything from O through 2" - 1

https://en.wikipedia.org/wiki/%C3%89variste_Galois
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Cubic_equation

What is a field?

“In mathematics, a field is a set on which addition, subtraction,
multiplication, and division are defined and behave as the corresponding
operations on rational and real numbers do.”

--Wikipedia
In cryptography, we often want to “undo things” or get the same result two
different ways
- Math!
On digital computers the math you learned in grade school is not good
enough
- Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
- Now the decryption needs the inverse operation. Crap!

- 1/3 is not easy to deal with (not even in floating point or fixed point)
e m—

Field

- Commutative * |nverse
atb=b+a at+-a=0
a*b=b*a a*al=1

» Associative Distributive
(a@a+b)+c=a+(b+cC) a*(b+c)=(@*b)+ (a*c)
(@*b)*c=a*(b*c)

* |dentity

Ol=1,a+0=a,a*1=a

Integers mod 100

« Commutative? Associative? ldentity?

* |nverse?

Integers mod 100

« Commutative? Associative? ldentity?

- averse?
- Sometimes there is one, e.g., 3 and 67 (201 % 100 = 1)
- Sometimes not, e.g., 5
- Integers mod 100 is not a finite field!

Integers mod 101

« Commutative? Associative? ldentity?

* |nverse?

- Every number 0 <i < 101 has a multiplicative inverse
* Co-prime to 101, because 101 is prime

- Integers mod 101 is a finite field!
* True of any prime number
* In general p* where p is prime and k is positive integer

GF(2)

» Want to define a field over 2% possibilities for a k-bit number

* 2 1s prime, all other powers of 2 are not
- Need to use irreducible polynomials

https://jedcrandall.github.io/courses/
cse548spring2024/miniaesspec.pdf

Published in Cryptologia, XXVI (4), 2002,
Mini Advanced Encryption Standard

(Mini-AES):
A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan

2.1 The Finite Field GF(2*)

The nibbles of Mini-AES can be thought of as elements in the finite field GF(2"). Finite
fields have the special property that operations (+,—, ¥ and +) on the field elements always

cause the result to be also in the field. Consider a nibble n = (ns, ns, ny, ng) where n; £ {0,1}.
Then, this nibble can be represented as a polynomial with binary coefficients i.e having

values in the set {0,1}:

K] 2
N=N;X +N: X +m x+0n,

Example 1
(Given a nibble, n = 1011, then this can be represented as
n=1x+0x"+1x+1l=x"+x+1

Note that when an element of GF(2%) is represented in polynomial form, the resulting
polynomial would have a degree of at most 3.

Z

2.2 Addition in GF(2")

When we represent elements of GF(2") as polynomials with coefficients in {0,1}, then
addition of two such elements is simply addition of the coefficients of the two polynomials.
Since the coefficients have values in {0,1}, then the addition of the coefficients is just modulo
2 addition or exclusive-OR denoted by the symbol @. Hence, for the rest of this paper, the
symbaols + and @ are used interchangeably to denote addition of two elements in GF(2").

Example 2
Given two nibbles, n = 1011 and m = 0111, then the sum, n + m= 1011 + 0111 = 1100 orin
polynomial notation:

n+m=(x+x+1)+(xX+x+1)=x"+x

2.3 Multiplication in GF(2") ;é

Multiplication of two elements of GF(2") can be done by simply multiplying the two
polynomials. However, the product would be a polynomial with a degree possibly higher
than 3.

Example 3
Given two nibbles, n= 1011 and m = 0111, then the product is:
(XK'+x+ D) +x+ D)= +xX+x+x+xX+x+x +x+1
=xX"+x +1

In order to ensure that the result of the multiplication is still within the field GF(2*), it must be
reduced by division with an irreducible polynomial of degree 4, the remainder of which will
be taken as the final result. An irreducible polynomial is analogous to a prime number in
arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself.
There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

m(x)=x +x+1

\
Example 4 ;&

Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(2"),

called the *product of n x m modulo m(x)" and denoted as &, is:
(X' +x+1)@ (X +x+1) =x'+x" + 1modulox’+x+1
2
=X
This is because:

X+ 1 (quotient)
XHx+1)x0+xt+1

+ :{5+}{E+x

4 z
X +x " +x+1
+ x* + x+1

X (remainder)

Note that since the coefficients of the polynomials are in {0,1}, then addition is simply

exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own
inverse.

L

[V

(TEA), Feistel structure with 32 rounds

#include <stdint.h>

An alternative to AES: Tiny Encryption Algorithm &\
[N

void encrypt (uint32 t v[2], const uint32 t k[4]) {

uint32 t vo=v[0], vl=v[1], sum=0, 1i; /* set up */

uint32 t delta=0x9E3779B9; /* a key schedule constant */
uint32 t ke=k[e], kl=k[1], k2=k[2], k3=k[3]; /* cache key */

for (i=0; 1<32; i++) { /* basic cycle start */

sum += delta;
vl += ((vl<<4) + k@) ~ (vl + sum) ~ ((v1>>5) + kl1);
vl += ((vO<<4) + k2) ™ (vO + sum) ™ ((v0>>5) + k3);
} /* end cycle */
v[0]=vO; v[1]=vl;
}

void decrypt (uint32 t v[2], const uint32 t k[4]) {
uint32 t vO=v([0], vl=v[1l], sum=0xC6EF3720, i; /* set up; sum 1s (delta << 5) & OxFFFFFFFF */

uint32 t delta=0x9E3779B9; /* a key schedule constant */
uint32 t ko=k[0], kl=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; 1<32; i++) { /* basic cycle start */

vl -= ((vB<<4) + k2) ~ (v@ + sum) "~ ((v@>>5) + k3);

vO -= ((vl<<d) + kB) ~ (vl + sum) ~ ((v1>>5) + kl);

sum -= delta;
} /* end cycle */

v[0]=vO; v[1]=vl;

Another alternative to AES: Blowfish (Twofish was in the AES competition)

P (64 bits)
L R]
Kr

faRY ‘

N F-Funcion
: % , one round
BN s i

— h >

¢ —=>| S-box2 ' ©
v LS Shbox3 H

15 more
rounds

undo last
swap
output

/ whitening

K18 Kl?ﬁT

T
N

| C (64 bits) |

P=Plaintext; C=Ciphertext; Kx = P-array-entry x
B =xor FH = addition mod 232

https://en.wikipedia.org/wiki/Blowfish_(cipher)

AES S-box requirements

e Can’t pull it out of our &%# like the NSA did for DES
* Should have good nonlinear properties

- Better nonlinearity means fewer rounds
* Should be reversible

- Don’t want to use a Feistel structure for performance
reasons

https://en.wikipedia.org/wiki/Kaisa_Nyberg

The MixColumns operation also uses Galois fields
(but is a linear function)...

17

20

21
22
23
24
25
26
27
28
29
30
31

private byte GMul({byte a, byte b) { // Galois Field (256) Multiplication of fwo Bytes
byte p = 0;

for (int counter = 0; counter = 8; counter++) {
if ((b & 1) = 0) {
p = a;

}

bool hi bit set
a === l? -
if (hi bit set) {

a "= 0Ox1B; /* x"8 + x™ + x"3 + x + 1 #*/

(a & OxB0) != 0;

}

b === 1;
}
return p;

}

private void MixColumns() { // 's' is the main State matrix, 'ss' is a temp matrix of the same dimensions
as 's'.
Array.Clear(ss, @, ss.Length);

for (int c = ©; ¢ < 4; c++) {
ss[@, c] = (byte)(GMul{ex@z, s[®, c]) ™ GMul(ox83, s[1, c]) ™ s[2, c] ™ s[3, cl);
ss[1, c] = (byte)(s[@, c] ™ GMul{oxe2, s[1, c]) ™ GMul{ex@3, s[2, c]) ™ s5[3.cl);
ss[2, c] = (byte)(s[®, c] ™ s[1, c] ™ GMul{®x@2, s[2, c]) ™ GMul{exe3, s[3, cl));
ss[3, c] = (byte)}(GMul({e0x®3, s[O,c]) ™ s[1, c] ™ s[2, c] ™ GMul({®x82, s[3, c]));
}

ss.CopyTo(s, 0);

https://en.wikipedia.org/wiki/Rijndael_MixColumns

AES

* 128-bit blocks, 128-, 192-, or 256-bit keys
- 10, 12, or 14 rounds respectively

* No less secure than the other candidates, but better performance...
- In hardware and software
» Different word sizes (8, 16, 32, 64)

— With or without specialized hardware support
 E.g., Gallois Fields on Blackfin DSPs
* E.g., AES special instruction set on Intel chips

Cipher modes

« ECB, CBC discussed in the next slides

* Also Counter Mode, Galois Counter Mode, Cipher
Feedback, Output Feedback, more...

- Parallelization, message authentication, and other features
« Can make stream ciphers out of block ciphers

Electronic Codebook (ECB)

|)E3i)

Plaintext Plaintext Plaintext
CITTTTT1TT1TT11 [T T TT 17111 CITTTTTTT1

" Block Cipher | " Block Cipher | ' Block Cipher |
Key — Encryption Key — = Encryption Key —» Encryption
' . '
LI T T T T 1711 LI T T T T TT1 LI T T T TTT1
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

2sf[Pes?7ae

Image stolen from Wikipedia

i)

Cipher Block Chaining (CBC)

S)E)

(>_< Flaintext Plaintext Flaintext
O—— [T T [TTTTT] [T T T TT]
O_< Initialization Vector (IW)
T T T TT1 -y - I
O_C Block Cipher Block Cipher Block Cipher
: ey - Encryption Key - Encryption Key - Encrypticn
07 ¥ v ¥
O T T T 171711 I I N I O T T T T 1711
Ciphertext Ciphertext Ciphertext
O_C Cipher Block Chaining (CBC) mode encryption

Image stolen from Wikipedia

geel]

0O ECB is generally bad

O Original image Encrypted using ECB mode Modes other than ECEB result in

: : pseudo-randomness

The image on the right is how the image might appear encrypted with CBC, CTR or any of the
O-O other more secure modes—indistinguishable from random noise. Note that the random
0.0 appearance of the image on the right does not ensure that the image has been securely
O C encrypted; many kinds of insecure encryption have been developed which would produce

C -output just as "random-looking".
Oagn® I len f Wikipedi
00 mage stolen rrom Wikipedia

=0 e

Stream cipher (preview)

Encryption : Decryption
I
I
I
I
K —>» A Kstr 1 Kstr A « K
IV—> : <«]V
I
I
I
I
I

CBC padding oracle attacks (preview)

S)E)

(>_< Flaintext Plaintaxt Flaintext
O—— [TTTTT] [TTTTT] [T T TTT]
O_< Initialization Vector (IWV)
O I - - - D
O_C | Block Cipher | | Block Cipher | Block Cipher |
: Key - Encryption Key — Encryption Key - Encrypticn
07 ¥ v ¥
O T T T T 1711 I N I T T T T 1711
Ciphertext Ciphertext Ciphertext
O_C Cipher Block Chaining (CBC) mode encryption

geel]

Cryptography Engineering by Ferguson et al.

Design
Principles
and Practical
Applications

Niels Ferguson
Bruce Schneier
Tadayoshi Kohno

We want to formalize confusion and diffusion.
For this and other things coming later in the
semester, we need to study information theory...

A puzzle...

You have 12 coins, one is counterfeit. The counterfeit is either
slightly heavier or slightly lighter, otherwise it's impossible to tell.
You have a balance. Using the balance the fewest number of
times, find the counterfeit coin.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

