AES and cipherblock chaining modes

CSE 468 Fall 2025
jedimaestro@asu.edu

Why study AES?

It's a good demonstration of principles we've been
talking about (e.g., confusion and diffusion)

It's the workhorse of the majority of network crypto, e.q.,
many SSH and TLS connections

It's easy to see that AES is just substitution, permutation,
and XOR

Substitution

H
TNWWX

L L1LO WORL.
DX.

=1

Lt

ABCD
BACD
CABD
DABC

ABDC
BADC
CADB
DACB

Permutation
ACBD ACDB
BCAD BCDA
CBAD CBDA
DBAC DBCA

ADBC
BDAC
CDAB
DCAB

ADCB
BDCA
CDBA
DCBA

Bitwise XOR

001010104
100001104
=101011004

Symmetric encryption over time...

Handwritten notes, etc. for centuries

« Typically the algorithm was secret

1883 ... Kerckhoff’s rules

* Now we know the key should be the only secret
1975 ... DES

 Efficient in hardware, not in software

2001 ... AES

« Efficient in software, and lots of different kinds of hardware

Substitution Permutation Network

e.g., AES 128-bit blocks, (128-, 192-, 256-)bit key, (10, 12, 14) rounds

PLAINTEXT KEY
Ty Ko
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
1] [T 11 [T 1] [T 1]
P
LT T [[11 [T 11 [[T
Ty K
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
1] [T 11 [T 1] [T 1]
P
LT T [[11 [T 11 [[T
Ty K
N
[T 11 [111 [T 11 [T 11
s, s, S, S,
LITT [T 11 [T 11 [T 1]
) K
NP,
CIPHERTEXT

AES

* Rijndael

« Joan Daemen and
Vincent Rijmen

* Very clever S-box design
that comes from Kaisa
Nyberg

 Based on finite fields
(a.k.a. Gallois fields)

Byte Sub

Shift Row

Mix Column

Add
Round
Key

L

[V

(TEA), Feistel structure with 32 rounds

#include <stdint.h>

An alternative to AES: Tiny Encryption Algorithm &\
[N

void encrypt (uint32 t v[2], const uint32 t k[4]) {

uint32 t vo=v[0], vl=v[1], sum=0, 1i; /* set up */

uint32 t delta=0x9E3779B9; /* a key schedule constant */
uint32 t ke=k[e], kl=k[1], k2=k[2], k3=k[3]; /* cache key */

for (i=0; 1<32; i++) { /* basic cycle start */

sum += delta;
vl += ((vl<<4) + k@) ~ (vl + sum) ~ ((v1>>5) + kl1);
vl += ((vO<<4) + k2) ™ (vO + sum) ™ ((v0>>5) + k3);
} /* end cycle */
v[0]=vO; v[1]=vl;
}

void decrypt (uint32 t v[2], const uint32 t k[4]) {
uint32 t vO=v([0], vl=v[1l], sum=0xC6EF3720, i; /* set up; sum 1s (delta << 5) & OxFFFFFFFF */

uint32 t delta=0x9E3779B9; /* a key schedule constant */
uint32 t ko=k[0], kl=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; 1<32; i++) { /* basic cycle start */

vl -= ((vB<<4) + k2) ~ (v@ + sum) "~ ((v@>>5) + k3);

vO -= ((vl<<d) + kB) ~ (vl + sum) ~ ((v1>>5) + kl);

sum -= delta;
} /* end cycle */

v[0]=vO; v[1]=vl;

Another alternative to AES: Blowfish (Twofish was in the AES competition)

P (64 bits)
L R]
Kr

faRY ‘

N F-Funcion
: % , one round
BN s i

— h >

¢ —=>| S-box2 ' ©
v LS Shbox3 H

15 more
rounds

undo last
swap
output

/ whitening

K18 Kl?ﬁT

T
N

| C (64 bits) |

P=Plaintext; C=Ciphertext; Kx = P-array-entry x
B =xor FH = addition mod 232

https://en.wikipedia.org/wiki/Blowfish_(cipher)

AES S-box requirements

e Can’t pull it out of our &%# like the NSA did for DES
* Should have good nonlinear properties

- Better nonlinearity means fewer rounds
* Should be reversible

- Don’t want to use a Feistel structure for performance
reasons

https://en.wikipedia.org/wiki/Kaisa_Nyberg

The MixColumns operation also uses Galois fields
(but is a linear function)...

17

20

21
22
23
24
25
26
27
28
29
30
31

private byte GMul({byte a, byte b) { // Galois Field (256) Multiplication of fwo Bytes
byte p = 0;

for (int counter = 0; counter = 8; counter++) {
if ((b & 1) = 0) {
p = a;

}

bool hi bit set
a === l? -
if (hi bit set) {

a "= 0Ox1B; /* x"8 + x™ + x"3 + x + 1 #*/

(a & OxB0) != 0;

}

b === 1;
}
return p;

}

private void MixColumns() { // 's' is the main State matrix, 'ss' is a temp matrix of the same dimensions
as 's'.
Array.Clear(ss, @, ss.Length);

for (int c = ©; ¢ < 4; c++) {
ss[@, c] = (byte)(GMul{ex@z, s[®, c]) ™ GMul(ox83, s[1, c]) ™ s[2, c] ™ s[3, cl);
ss[1, c] = (byte)(s[@, c] ™ GMul{oxe2, s[1, c]) ™ GMul{ex@3, s[2, c]) ™ s5[3.cl);
ss[2, c] = (byte)(s[®, c] ™ s[1, c] ™ GMul{®x@2, s[2, c]) ™ GMul{exe3, s[3, cl));
ss[3, c] = (byte)}(GMul({e0x®3, s[O,c]) ™ s[1, c] ™ s[2, c] ™ GMul({®x82, s[3, c]));
}

ss.CopyTo(s, 0);

https://en.wikipedia.org/wiki/Rijndael_MixColumns

AES

* 128-bit blocks, 128-, 192-, or 256-bit keys
- 10, 12, or 14 rounds respectively

* No less secure than the other candidates, but better performance...
- In hardware and software
» Different word sizes (8, 16, 32, 64)

— With or without specialized hardware support
 E.g., Gallois Fields on Blackfin DSPs
* E.g., AES special instruction set on Intel chips

Cipher modes

« ECB, CBC discussed in the next slides

* Also Counter Mode, Galois Counter Mode, Cipher
Feedback, Output Feedback, more...

- Parallelization, message authentication, and other features
« Can make stream ciphers out of block ciphers

Electronic Codebook (ECB)

|)E3i)

Plaintext Plaintext Plaintext
CITTTTT1TT1TT11 [T T TT 17111 CITTTTTTT1

" Block Cipher | " Block Cipher | ' Block Cipher |
Key — Encryption Key — = Encryption Key —» Encryption
' . '
LI T T T T 1711 LI T T T T TT1 LI T T T TTT1
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

2sf[Pes?7ae

Image stolen from Wikipedia

i)

Cipher Block Chaining (CBC)

S)E)

(>_< Flaintext Plaintext Flaintext
O—— [T T [TTTTT] [T T T TT]
O_< Initialization Vector (IW)
T T T TT1 -y - I
O_C Block Cipher Block Cipher Block Cipher
: ey - Encryption Key - Encryption Key - Encrypticn
07 ¥ v ¥
O T T T 171711 I I N I O T T T T 1711
Ciphertext Ciphertext Ciphertext
O_C Cipher Block Chaining (CBC) mode encryption

Image stolen from Wikipedia

geel]

0O ECB is generally bad

O Original image Encrypted using ECB mode Modes other than ECEB result in

: : pseudo-randomness

The image on the right is how the image might appear encrypted with CBC, CTR or any of the
O-O other more secure modes—indistinguishable from random noise. Note that the random
0.0 appearance of the image on the right does not ensure that the image has been securely
O C encrypted; many kinds of insecure encryption have been developed which would produce

C -output just as "random-looking".
Oagn® I len f Wikipedi
00 mage stolen rrom Wikipedia

=0 e

Stream ciphers can be built out of block ciphers

Encryption : Decryption
I
I
I
I
K —>» A Kstr 1 Kstr A « K
IV—> : <«]V
I
I
I
I
I

00O Stream ciphers can be built out of block ciphers

o—O Nonce Counter Nonce Counter Nonce Counter
O’O c59bcf35.. OOO00O00 c59bcf35.. 00000001 c59bcf35.. 00000002
O_O HEEEREREEREEN HEEEEERERREEN HEEEEEREEREER

0—0O | v v

oO—-o0O block cipher block cipher block cipher
0;0 Key encryption Key encryption Key encryption

Plaintext —— Plaintext ——— Plaintext —————

O—OOIIITITITTIT] HNENENEEEEEER HNEEEEENEREER
0—0 HENENENEEEEEN HENENEEEENEEE ANNNEENEEEEEN

Ciphertext Ciphertext Ciphertext

O—0 Counter (CTR) mode encryption

CBC padding oracle attacks...

S)E)

(>_< Plaintext Plaintaxt Flaintext
Oi [T T T T T 11 N N I I I I I I
O_< Initialization Vector (IWV) [
I - - -D
O_C Block Cipher Block Cipher Block Cipher
: Key - Encryption Key — Encryption Key —» Encrypticn
07 ¥ v '
O T T T T 1711 I N I CIITTT1TT1T1711
Ciphertext Ciphertext Ciphertext
O_C Cipher Block Chaining (CBC) mode encryption

geel]

CBC padding oracle attack

examples
* Serge Vaudenay published the original attack in 2002

- Applied to web frameworks like Ruby on Rails, ASP.NET, and
JavaServer Faces

* POODLE (published by Google in 2014) exploited SSLv3
that is still widely used by web servers and browsers

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html

Alice and Bob have a shared secret

Eve makes a copy
of the ciphertext as
It Is transmitted from
Alice to Bob.

Alice and Bob have a shared secret
key

Eve re-plays modified copies of the
encrypted message and learns
Information about the plaintext from
Bob's behavior (e.g., Bob throws an
exception for padding error)

PKCS#7 padding

* AES always encrypts in 128-bit blocks
— 128 bits == 16 bytes

* If you fill up blocks, that's great
— But, the last block might not be full

* Need an “unambiguous” way to pad the last block so the
decrypting party knows the padding to throw out

- E.g., PKCS#7 (PKCS == Public Key Cryptography Standards)

03 03 03

05 05 05 05 05

07 07 07 07 07 07 O7

09 09 09 09 09 09 09 09 09

OB OB OB OB OB OB OB OB OB OB OB

ob oD OD OD OD OD OD OD OD OD OD OD OD

OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF

When last block is decrypted

* Check last byte of the last block, that's the number of
bytes of padding

- Callit N

e There should be N N's on the end

- If not, throw a padding error

- If so, remove them, they're padding
* Might remove the whole last block if N = 16 (or 10 in hex)

Ciphertext Ciphertext Ciphertext
NN EEEEEEE NN EEEEEEE NN EEEEEEE

l l
| | }
block cipher block cipher block cipher
Ky decryption Ky decryption ey decryption
Initialization Vector (I1V)
LIttt irtlf— = =
NN EEEEEEE NN EEEEEEE NN EEEEEEE
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Reqguirements for attack

* Ability to modify ciphertexts and replay them

— Chosen ciphertext attack
* A padding oracle

- |.e., something that tells you whether the
corresponding plaintext (for any ciphertext you
send) has valid padding or not

Example plaintext (we don't know
the plaintext yet before the attack)

H e I o] 20 W 0 r d ! \n 03 03 03

Example protocol for a client to send
an encrypted message to a server

N u m b I k S ; 1 K e y I D ; A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 8 Al 02 1 BC A5 7/7/E 98

Example protocol for a client to send
an encrypted message to a server

Number of blocks Which key?

N u m b | k s ; 1 K e vy I D A3
OO 0O OO OO OO OO OO OO OO OO OO OO OO0 00 00 o00
98 CC BE 01 FF 26 39 97 8 A1 02 1E BC A5 7E 98

Example protocol for a client to send
an encrypted message to a server

N u m B I k s : 1 K e vy | D : A3

98 CC BE 01 FF 2739 97 8 Al 02 1E BC A5 7E 98

IV I1s randomly chosen but visible on the wire and known
to you, won't be O like in this illustration

Example protocol for a client to send
an encrypted message to a server

0
O X
”n
@R
e
®
O <
O
>
@

D
(@)
(@)
C
C

laVa laVa
Uyv Uuv Uv

D
C
C

faVat faVal
Uuv Uv

D

~ NN
U Uv

98 CC BE (7F 26 39 97/ 8 Al 02 1E BC A5 /7/E 98

Ciphertext is what you want to decrypt, you will recover
the plaintext without needing to know the key!

)
>

© c

S

C

S 1S

)

Server response Is visible to you

* “Message decrypted successfully”
---0f---
» “Padding error during decryption”

You can record a client message
and replay it to the server

N u m b | k s : 1 K e vy | D : A3

OO 00O OO OO OO OO OO OO OO OO OO OO OO 00 O
98 CC BE 01 FF 26 39 97 8 Al 02 1E BC /E 98

Try every value of this byte from 00 to FF

You can record a client message
and replay It to the server

N u m b | k s : 1 K e vy | D : A3

OO 00O OO OO OO OO OO OO OO OO OO OO OO 00 O
98 CC BE 01 FF 26 39 97 8 Al 02 1E BC /E 98

Try every value of this byte from 00 to FF,

will flip bits here...
H e | | o 920 W o r d ' \n 03 03 03

Ciphertext Ciphertext Ciphertext
NN EEEEEEE NN EEEEEEE NN EEEEEEE

l l
| | }
block cipher block cipher block cipher
Ky decryption Ky decryption ey decryption
Initialization Vector (I1V)
LIttt irtlf— = =
NN EEEEEEE NN EEEEEEE NN EEEEEEE
Plaintext Plaintext Plaintext

Cipher Block Chaining (CBC) mode decryption

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Suppose two values give valid
padding

* 00 gives valid padding, this is just confirmation that the
original plaintext has valid padding

* 02 also gives valid padding

— Can recover one byte of plaintext:
Q XOR 02 ==01, s0... Q == 01 XOR 02 == 03

Q Is the byte of plaintext we're trying to guess

WTFEF?

98 CC BE 01 FF 26 39 97 Al 02 1E BC A5 7E 98

“Information only has meaning in that it is
subject to interpretation”

01 XOR 02 =03

98 CC BE 01 FF 26 39 9@. 02 1E BC A5 98

Now attack here

01 XOR 02 =03

Hold this at 01

N u m b | k s ; 1 K e vy I D A3
OO OO OO OO OO OO OO OO OO OO OO0 OO0 00 o0 01

98 CC BE 01 FF 26 39 97 A1 02 1E BC A5 7E 98
—_— =

H e | | o 20 W o r | d ' \n 03 [03 /|02

/

Now attack here

Discussion

You still don't know the key, probably never will

It doesn't matter how secure AES is or the size of the key

* CBC is probably the most commonly used mode for
some application types

 What if a byte Is already what it needs to be?
* What if there Is more than one block?

References

* https://grymoire.wordpress.com/2014/12/05/
cbc-padding-oracle-attacks-simplified-key-
concepts-and-pitfalls/

Cryptography Engineering by Ferguson et al.

Design
Principles
and Practical
Applications

Niels Ferguson
Bruce Schneier
Tadayoshi Kohno

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

