
 1

AES and cipherblock chaining modes

CSE 468 Fall 2025
jedimaestro@asu.edu

 2

Why study AES?

● It’s a good demonstration of principles we’ve been
talking about (e.g., confusion and diffusion)

● It’s the workhorse of the majority of network crypto, e.g.,
many SSH and TLS connections

● It’s easy to see that AES is just substitution, permutation,
and XOR

HELLO WORLD
TNWWX DXPWE

Substitution

Permutation

ABCD   ABDC   ACBD   ACDB   ADBC   ADCB
BACD   BADC   BCAD   BCDA   BDAC   BDCA
CABD   CADB   CBAD   CBDA   CDAB   CDBA
DABC   DACB   DBAC   DBCA   DCAB   DCBA

Bitwise XOR

 00101010b

⊕10000110b

=10101100b

Symmetric encryption over time...

● Handwritten notes, etc. for centuries
● Typically the algorithm was secret

● 1883 … Kerckhoff’s rules
● Now we know the key should be the only secret

● 1975 … DES
● Efficient in hardware, not in software

● 2001 … AES
● Efficient in software, and lots of different kinds of hardware

Substitution Permutation Network
e.g., AES 128-bit blocks, (128-, 192-, 256-)bit key, (10, 12, 14) rounds

AES

● Rijndael
● Joan Daemen and

Vincent Rijmen
● Very clever S-box design

that comes from Kaisa
Nyberg

● Based on finite fields
(a.k.a. Gallois fields)

An alternative to AES: Tiny Encryption Algorithm
 (TEA), Feistel structure with 32 rounds

https://en.wikipedia.org/wiki/Blowfish_(cipher)
Another alternative to AES: Blowfish (Twofish was in the AES competition)

https://en.wikipedia.org/wiki/Blowfish_(cipher)

AES S-box requirements
● Can’t pull it out of our &%# like the NSA did for DES
● Should have good nonlinear properties

– Better nonlinearity means fewer rounds
● Should be reversible

– Don’t want to use a Feistel structure for performance
reasons

https://en.wikipedia.org/wiki/Kaisa_Nyberg

https://en.wikipedia.org/wiki/Kaisa_Nyberg

The MixColumns operation also uses Galois fields
(but is a linear function)...

https://en.wikipedia.org/wiki/Rijndael_MixColumns

https://en.wikipedia.org/wiki/Rijndael_MixColumns

AES
● 128-bit blocks, 128-, 192-, or 256-bit keys

– 10, 12, or 14 rounds respectively
● No less secure than the other candidates, but better performance…

– In hardware and software
● Different word sizes (8, 16, 32, 64)

– With or without specialized hardware support
● E.g., Gallois Fields on Blackfin DSPs
● E.g., AES special instruction set on Intel chips

Cipher modes

● ECB, CBC discussed in the next slides
● Also Counter Mode, Galois Counter Mode, Cipher

Feedback, Output Feedback, more...
● Parallelization, message authentication, and other features
● Can make stream ciphers out of block ciphers

Electronic Codebook (ECB)

Image stolen from Wikipedia

Cipher Block Chaining (CBC)

Image stolen from Wikipedia

ECB is generally bad

Image stolen from Wikipedia

Stream ciphers can be built out of block ciphers

Stream ciphers can be built out of block ciphers

CBC padding oracle attacks...

CBC padding oracle attack
examples

● Serge Vaudenay published the original attack in 2002
– Applied to web frameworks like Ruby on Rails, ASP.NET, and

JavaServer Faces
– https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850

/2850.pdf
● POODLE (published by Google in 2014) exploited SSLv3

that is still widely used by web servers and browsers
– https://security.googleblog.com/2014/10/this-poodle-bites-explo

iting-ssl-30.html

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html

Alice and Bob have a shared secret
key

Eve makes a copy
of the ciphertext as
it is transmitted from
Alice to Bob.

Alice and Bob have a shared secret
key

Eve re-plays modified copies of the
encrypted message and learns
information about the plaintext from
Bob's behavior (e.g., Bob throws an
exception for padding error)

PKCS#7 padding
● AES always encrypts in 128-bit blocks

– 128 bits == 16 bytes
● If you fill up blocks, that's great

– But, the last block might not be full
● Need an “unambiguous” way to pad the last block so the

decrypting party knows the padding to throw out
– E.g., PKCS#7 (PKCS == Public Key Cryptography Standards)

When last block is decrypted
● Check last byte of the last block, that's the number of

bytes of padding
– Call it N

● There should be N N's on the end
– If not, throw a padding error
– If so, remove them, they're padding

● Might remove the whole last block if N = 16 (or 10 in hex)

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Requirements for attack
● Ability to modify ciphertexts and replay them

– Chosen ciphertext attack
● A padding oracle

– I.e., something that tells you whether the
corresponding plaintext (for any ciphertext you
send) has valid padding or not

Example plaintext (we don't know
the plaintext yet before the attack)

H e l l o 20 W o r l d ! \n 03 03 03

Example protocol for a client to send
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Example protocol for a client to send
an encrypted message to a server

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Number of blocks Which key?

Example protocol for a client to send
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

IV is randomly chosen but visible on the wire and known
to you, won't be 0 like in this illustration

Example protocol for a client to send
an encrypted message to a server

N u m B l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Ciphertext is what you want to decrypt, you will recover
the plaintext without needing to know the key!

Server response is visible to you
● “Message decrypted successfully”

 ---or---
● “Padding error during decryption”

You can record a client message
and replay it to the server

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Try every value of this byte from 00 to FF

You can record a client message
and replay it to the server

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

Try every value of this byte from 00 to FF,
will flip bits here...
H e l l o 20 W o r l d ! \n 03 03 03

By WhiteTimberwolf (SVG version) - PNG version, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26434095

Suppose two values give valid
padding

● 00 gives valid padding, this is just confirmation that the
original plaintext has valid padding

● 02 also gives valid padding
– Can recover one byte of plaintext:

Q XOR 02 == 01, so... Q == 01 XOR 02 == 03

Q is the byte of plaintext we're trying to guess

WTF?

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 01

“Information only has meaning in that it is
subject to interpretation”

01 XOR 02 = 03

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 02

Now attack here

01 XOR 02 = 03

N u m b l k s : 1 K e y I D : A3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
98 CC BE 01 FF 26 39 97 85 A1 02 1E BC A5 7E 98

H e l l o 20 W o r l d ! \n 03 03 02

Now attack here

Hold this at 01

Discussion
● You still don't know the key, probably never will
● It doesn't matter how secure AES is or the size of the key
● CBC is probably the most commonly used mode for

some application types
● What if a byte is already what it needs to be?
● What if there is more than one block?

References
● https://grymoire.wordpress.com/2014/12/05/

cbc-padding-oracle-attacks-simplified-key-
concepts-and-pitfalls/

Cryptography Engineering by Ferguson et al.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

