(Extended) Euclidean Algorithm and Fermat’s
little theorem

CSE 468 Fall 2025
jedimaestro@asu.edu

For gcd (greatest common divisor)

https://en.wikipedia.org/wiki/Euclidean_algorithm

Subtraction-based
animation of the
Euclidean algorithm. The
initial rectangle has
dimensions a = 1071 and
b = 462. Squares of size
462x462 are placed within
it leaving a 462x147
rectangle. This rectangle
is tiled with 147x147
squares until a 21x147
rectangle is left, which in
turn is tiled with 21x21
squares, leaving no
uncovered area. The
smallest square size, 21,
is the GCD of 1071 and
462.

function gcd(a, b)
if b = 0
return a
else
return gcd(b, a mod b)

function gcd(a, b)
while a # b
if a >
a :

else
h :

return a

I T
Q)
|
=

|
o

I
Q)

Source code from the inspect module in Python 2.7:

>>> print inspect.getsource(gcd)
def gcd(a, b):
"""Calculate the Greatest Common Divisor of a and b.

Unless b==0, the result will have the same sign as b (so
b is divided by it, the result comes out positive).

1

while b:
a, b =Db, ak%b
return a

https://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python

Extended Euclidean Algorithm

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact

The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46. The
greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at
row 6, because the remainder in it is 0. Bézout coefficients appear in the last two entries of the second-to-
last row. In fact, it is easy to verify that -9 x 240 + 47 x 46 = 2. Finally the last two entries 23 and —120 of
the last row are, up to the sign, the quotients of the input 46 and 240 by the greatest common divisor 2.

index i quotient gj-; Remainder r; S; tj
0 240 1 0
1 46 0 1
2| 240+46=5240-5%x46=10 1-5x0=1 0-5x1=-5
3 46 +10=4 46-4x10=6| 0-4x1=-4 1-4x-5=21
4 10+6=1 10-1x6=4| 1-1x-4=5| -5-1x21=-26
5 6+4=1 6-1%x4=2|-4-1x5=-9 21 -1x-26=47
6 4+2=2 4-2x2=0|5-2x-9=23|-26-2x 47 =-120

function extended gcd(a, b)
(old r, r) := (a, b)
(old s, s) = (1, O)
(old t, t) = (0, 1)

while r # 0 do

quotient := old r div r

(old r, r) := (r, old r — quotient x r)

(old s, s) := (s, old s - quotient x s)

(old t, t) = (t, old t - quotient x t)
output "Bézout coefficients:", (old s, old t)
output "greatest common divisor:", old r

output "quotients by the gcd:", (t, s)

Multiplicative inverses for finite fields...

* Find d = e for a finite field mod p:
- Sp +te =gcd(p, e)
- spt+tele=1
e t=d=e?, canthrow away s

* Easier way (you'll do both on HW and exam): Fermat’s little
theorem...

« Since the nonzero elements of GF(p™) form a finite group with respect to multiplication, af1=1 (for a £ 0), thus the inverse of a
is a? 2. This algorithm is a generalization of the modular multiplicative inverse based on Fermat's little theorem.

We only care about n=1 for the HW and exam.

10

https://en.wikipedia.org/wiki/Finite_field_arithmetic#Multiplicative_inverse

a” mod p = a (mod p)
a1t mod p =1 (mod p)
a*< mod p = a* (mod p)

11

https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/

i i
SR
i e

We already know there are 4? — ; strands with at least two colors; since we can put them in groups
of p, one for each necklace of at least two colors, o7 — ¢ must be evenly divisible by p. QED!

12

https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/

Finite fields mod p

Inverse Is just er<

So why study the Extended Euclidean algorithm? Because
we can’t do signatures with Diffie-Hellman, since Fermat'’s little

theorem is an easy way to find multiplicative inverses.
Same is true of any finite field, so RSA uses ring theory:
- n =pq where p and g are prime

- @(h) =(p—1)(qg — 1) is Euler’s totient function, which counts
the numbers less than n that are co-prime to n

13

Your goal is to find d such thated = 1 (mod ¢(n)).

Recall the EED calculates & and y such that az + by = ged (a, b). Nowleta = e, b = ¢(n),
and thus ged (e, @(n)) = 1 by definition (they need to be coprime for the inverse to exist). Then

you have:
ex + p(n)y =1
Take this modulo (n), and you get:
ex =1 (mod ¢(n))

And it's easy to see that in this case, © = d. The value of 1 does not actually matter, since it will
get eliminated modulo c,.:{-n} regardless of its value. The EED will give you that value, but you can

safely discard it.

14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

