

(Extended) Euclidean Algorithm and Fermat's little theorem

CSE 468 Fall 2025
jedimaestro@asu.edu

For gcd (greatest common divisor)

- https://en.wikipedia.org/wiki/Euclidean_algorithm

Subtraction-based animation of the Euclidean algorithm. The initial rectangle has dimensions $a = 1071$ and $b = 462$. Squares of size 462×462 are placed within it leaving a 462×147 rectangle. This rectangle is tiled with 147×147 squares until a 21×147 rectangle is left, which in turn is tiled with 21×21 squares, leaving no uncovered area. The smallest square size, 21, is the GCD of 1071 and 462.


```
function gcd(a, b)
  if b = 0
    return a
  else
    return gcd(b, a mod b)
```

```
function gcd(a, b)
  while a ≠ b
    if a > b
      a := a – b
    else
      b := b – a
  return a
```

<https://stackoverflow.com/questions/11175131/code-for-greatest-common-divisor-in-python>

Source code from the `inspect` module in Python 2.7:

```
>>> print inspect.getsource(gcd)
def gcd(a, b):
    """Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so
    b is divided by it, the result comes out positive).
    """
    while b:
        a, b = b, a%b
    return a
```

Extended Euclidean Algorithm

- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
- <https://crypto.stackexchange.com/questions/5889/calculating-rs-a-private-exponent-when-given-public-exponent-and-the-modulus-fact>

The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46. The greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at row 6, because the remainder in it is 0. Bézout coefficients appear in the last two entries of the second-to-last row. In fact, it is easy to verify that $-9 \times 240 + 47 \times 46 = 2$. Finally the last two entries 23 and -120 of the last row are, up to the sign, the quotients of the input 46 and 240 by the greatest common divisor 2.

index i	quotient q_{i-1}	Remainder r_i	s_i	t_i
0		240	1	0
1		46	0	1
2	$240 \div 46 = 5$	$240 - 5 \times 46 = 10$	$1 - 5 \times 0 = 1$	$0 - 5 \times 1 = -5$
3	$46 \div 10 = 4$	$46 - 4 \times 10 = 6$	$0 - 4 \times 1 = -4$	$1 - 4 \times -5 = 21$
4	$10 \div 6 = 1$	$10 - 1 \times 6 = 4$	$1 - 1 \times -4 = 5$	$-5 - 1 \times 21 = -26$
5	$6 \div 4 = 1$	$6 - 1 \times 4 = 2$	$-4 - 1 \times 5 = -9$	$21 - 1 \times -26 = 47$
6	$4 \div 2 = 2$	$4 - 2 \times 2 = 0$	$5 - 2 \times -9 = 23$	$-26 - 2 \times 47 = -120$

```
function extended_gcd(a, b)
  (old_r, r) := (a, b)
  (old_s, s) := (1, 0)
  (old_t, t) := (0, 1)

  while r ≠ 0 do
    quotient := old_r div r
    (old_r, r) := (r, old_r - quotient × r)
    (old_s, s) := (s, old_s - quotient × s)
    (old_t, t) := (t, old_t - quotient × t)

  output "Bézout coefficients:", (old_s, old_t)
  output "greatest common divisor:", old_r
  output "quotients by the gcd:", (t, s)
```

Multiplicative inverses for finite fields...

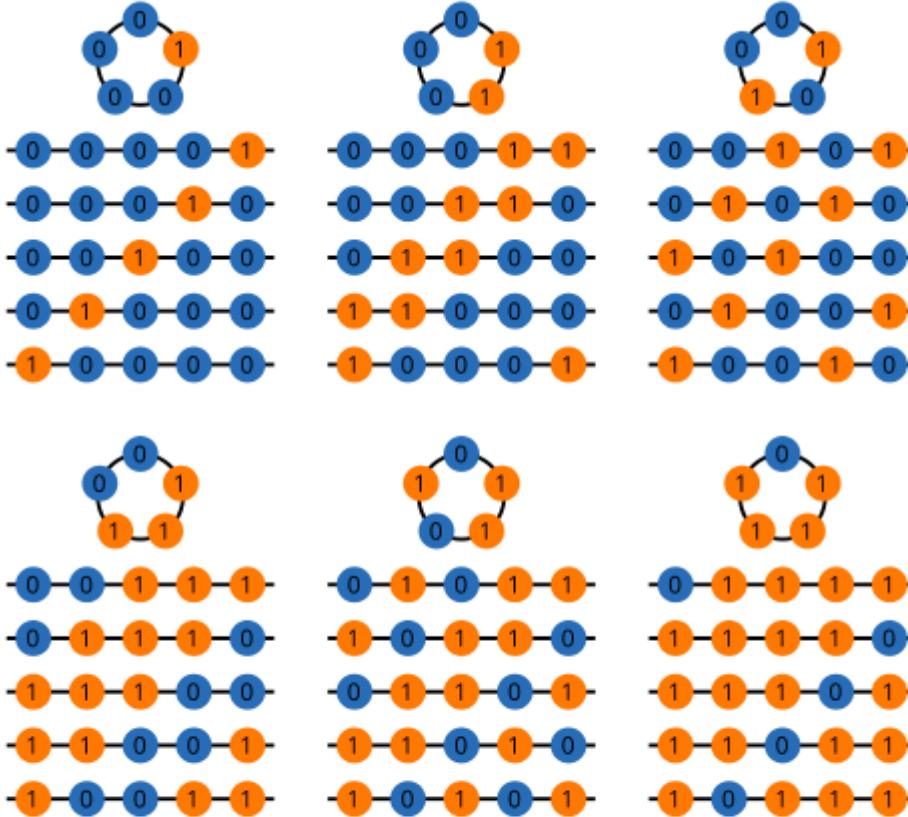
- Find $d = e^{-1}$ for a finite field mod p :
 - $sp + te = \gcd(p, e)$
 - $sp + e^{-1}e = 1$
 - $t = d = e^{-1}$, can throw away s
- Easier way (you'll do both on HW and exam): Fermat's little theorem...

https://en.wikipedia.org/wiki/Finite_field_arithmetic#Multiplicative_inverse

- Since the nonzero elements of $\text{GF}(p^n)$ form a **finite group** with respect to multiplication, $a^{p^n-1} = 1$ (for $a \neq 0$), thus the inverse of a is a^{p^n-2} . This algorithm is a generalization of the **modular multiplicative inverse** based on **Fermat's little theorem**.

We only care about $n=1$ for the HW and exam.

$$\begin{aligned}a^p \bmod p &= a \pmod p \\a^{p-1} \bmod p &= 1 \pmod p \\a^{p-2} \bmod p &= a^{-1} \pmod p\end{aligned}$$



We already know there are $a^p - a$ strands with at least two colors; since we can put them in groups of p , one for each necklace of at least two colors, $a^p - a$ must be evenly divisible by p . QED!

Finite fields $\text{mod } p$

- Inverse is just e^{p-2}
- **So why study the Extended Euclidean algorithm?** Because we can't do signatures with Diffie-Hellman, since Fermat's little theorem is an easy way to find multiplicative inverses.
- Same is true of any finite field, so RSA uses ring theory:
 - $n = pq$ where p and q are prime
 - $\varphi(n) = (p - 1)(q - 1)$ is Euler's totient function, which counts the numbers less than n that are co-prime to n

Your goal is to find d such that $ed \equiv 1 \pmod{\varphi(n)}$.

Recall the EED calculates x and y such that $ax + by = \gcd(a, b)$. Now let $a = e$, $b = \varphi(n)$, and thus $\gcd(e, \varphi(n)) = 1$ by definition (they need to be coprime for the inverse to exist). Then you have:

$$ex + \varphi(n)y = 1$$

Take this modulo $\varphi(n)$, and you get:

$$ex \equiv 1 \pmod{\varphi(n)}$$

And it's easy to see that in this case, $x = d$. The value of y does not actually matter, since it will get eliminated modulo $\varphi(n)$ regardless of its value. The EED will give you that value, but you can safely discard it.