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What is a field?

“In mathematics, a field is a set on which addition, subtraction,
multiplication, and division are defined and behave as the corresponding
operations on rational and real numbers do.”

--Wikipedia
In cryptography, we often want to “undo things” or get the same result two
different ways
- Math!
On digital computers the math you learned in grade school is not good
enough
- Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
- Now the decryption needs the inverse operation. Crap!

- 1/3 is not easy to deal with (not even in floating point or fixed point)
e m—




Field

- Commutative * |nverse
atb=b+a at+-a=0
a*b=b*a a*al=1

» Associative  Distributive
(a@a+b)+c=a+(b+cC) a*(b+c)=(@*b)+ (a*c)
(@*b)*c=a*(b*c)

* |dentity

Ol=1,a+0=a,a*1=a




Arithmetic modulo a prime is a finite field

6+4=3(mod?7)
3—-6=4(mod 7)
5*2=3(mod 7)
5*3=1(mod 7)
3*51=3*3=2(mod 7)

This Is called GF(7)



GF(2)

0+ 0=0(mod 2)
O+1=1(mod 2)
1+0=1(mod 2)
1+1=0(mod 2)

How to subtract?
Where have you seen this before?



GF(2)

0*0=0(mod 2)
0*1=0(mod 2)
1*0=0(mod 2)
1*1=1(mod 2)

Where have you seen this before?



GF(2) XOR

« K+K=0 c KQK=0

c P+K)+K=P c PEKPK=P
*c (A+K)+(B+K)=A+B « AGK @DBDPK =AEPB

e D+ K=K 'O@K:K



S

How to use GF(2) to achieve what we want?
[ N

» Want to define a field over 2% possibilities for a k-bit number

* 2 1s prime, all other powers of 2 are not
- Need to use irreducible polynomials




https://jedcrandall.github.io/courses/
cse548spring2024/miniaesspec.pdf

Published in Cryptologia, XXVI (4), 2002,
Mini Advanced Encryption Standard

(Mini-AES):
A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan




2.1  The Finite Field GF(2*)

The nibbles of Mini-AES can be thought of as elements in the finite field GF(2"). Finite
fields have the special property that operations (+,—, ¥ and +) on the field elements always

cause the result to be also in the field. Consider a nibble n = (ns, ns, ny, ng) where n; £ {0,1}.
Then, this nibble can be represented as a polynomial with binary coefficients i.e having

values in the set {0,1}:

N=mX +MX +0m X+
Example 1
(Given a nibble, nrhen this can be represented as
n=1x+0x"+1x+1=x"+x+1

Note that when an element of GF(2%) is represented in polynomial form, the resulting
polynomial would have a degree of at most 3.
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2.2 Addition in GF(2")

When we represent elements of GF(2") as polynomials with coefficients in {0,1}, then
addition of two such elements is simply addition of the coefficients of the two polynomials.
Since the coefficients have values in {0,1}, then the addition of the coefficients is just modulo
2 addition or exclusive-OR denoted by the symbol @. Hence, for the rest of this paper, the
symbaols + and @ are used interchangeably to denote addition of two elements in GF(2").

Example 2
Given two nibbles, n = 1011 and m = 0111, then the sum, n + m= 1011 + 0111 = 1100 orin
polynomial notation:

n+m=(x+x+1)+(xX+x+1)=x"+x




2.3 Multiplication in GF(2") ;é

Multiplication of two elements of GF(2") can be done by simply multiplying the two
polynomials. However, the product would be a polynomial with a degree possibly higher
than 3.

Example 3
Given two nibbles, n= 1011 and m = 0111, then the product is:
(XK'+x+ D) +x+ D)= +xX+x+x+xX+x+x +x+1
=xX"+x +1

In order to ensure that the result of the multiplication is still within the field GF(2*), it must be
reduced by division with an irreducible polynomial of degree 4, the remainder of which will
be taken as the final result. An irreducible polynomial is analogous to a prime number in
arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself.
There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

m(x)=x +x+1




\
Example 4 ;&

Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(2"),

called the *product of n x m modulo m(x)" and denoted as &, is:
(X' +x+1)@ (X +x+1) =x'+x" + 1modulox’+x+1
2
=X
This is because:

X+ 1 (quotient)
XHx+1)x0+xt+1

+ :{5+}{E+x

4 z
X +x " +x+1
+ x* + x+1

X (remainder)

Note that since the coefficients of the polynomials are in {0,1}, then addition is simply

exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own
inverse.




Basics of crypto...

« Symmetric encryption

« Assumes two parties wishing to communicate already have a
shared secret

« Asymmetric encryption

- Makes different assumptions (e.qg., that everybody knows the
public key or that the eavesdropper is passive)

*  Quantum computers break current algorithms that are used in

practice
« Secure hash functions and message authentication
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Terminology

* Plaintext — before encryption, easy to read

* Ciphertext — after encryption, hopefully indecipherable
without the key

* Key — the shared secret, typically just bits that were
generated with a high entropy process

18



‘4

@

@

Alice Eve or Bob
Mallory

WiIFi, electric path, or optical... Eve or Mallory get their own copy!
So how to Alice and Bob exchange a key?



A nice video about Diffie-Hellman

Diffie-Hellman is asymmetric crypto

20


https://www.youtube.com/watch?v=YEBfamv-_do

Darknet Diaries, Episode 83

https://darknetdiaries.com/transcript/83/

“There was no concept of doing anything cryptographic in
terms of software back in the late 80s. | say this, I'm in
contact with a fellow alumni from the InfoSec organization and
people that were there years before | was, and I've asked. To
the best that | have been able to figure out, what we ended up
producing which was half paper pad, half key on a floppy, and
a computer program that would do the encryption and
decryption. That was the first foray into software-based
cryptography that NSA produced.”

--Jeff Man

21



Crupto Museum

cryptomuseum.com
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Couple of footnotes

* Diffie-Hellman-Merkle?

« Who was first?

 Diffie-Hellman conceived and then published 1976
* GCHQ version conceived 1969, published 1997

24



Basics...

* https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_
key exchange
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https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
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Alice Bob Eve
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¢ p=23 p=23 p=23
C g=>5 g=>5 g=>5
OE a==6 b b=15 a a,b
A = 52 mod 23 B = 5" mod 23
OSA:EEmndzzza B =51 mod 23 =19
( B=19 A=8 A=8 B=19
( s = B mod 23 s = AP mod 23
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C
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The paper...

I. INTRODUCTION

E STAND TODAY on the brink of a revolution in

cryptography. The development of cheap digital
hardware has freed it from the design limitations of me-
chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such commercial applications as remote cash dispensers
and computer terminals. In turn, such applications create
a need for new types of cryptographic systems which
minimize the necessity of secure key distribution channels
and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory
and computer science show promise of providing provably
secure cryptosystems, changing this ancient art into a
science.
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L=

tation time must be small. A million instructions (costing
approximately $0.10 at bicentennial prices) seems to be
a reasonable limit on this computation. If we could ensure,

There is currently little evidence for the existence of
trap-door ciphers. However they are a distinct possibility
and should be remembered when accepting a cryptosystem
from a possible opponent [12].

Manuscript received June 3, 1976. This work was partially supported
by the National Science Foundation under NSF Grant ENG 10173.
Portions of this work were presented at the IEEE Information Theory
Workshop, Lenox . MA, June 23-25, 1975 and the IEEE International
Symposium on Information Theory in Ronneby, Sweden, June 21-24,
1976.
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We assume that the function f is public information, so
that it is not ignorance of f which makes calculation of f~!
difficult. Such functions are called one-way functions and
were first employed for use in login procedures by R. M.
Needham [9, p. 91]. They are also discussed in two recent
papers [10], [11] which suggest interesting approaches to
the design of one-way functions.

More precisely, a function f is a one-way function if, for
any argument x in the domain of f, it is easy to compute the
corresponding value f(x), yet, for almost all y in the range
of f, it is computationally infeasible to solve the equation
v = f(x) for any suitable argument x.

pp. 415, 420, 422-424]|. We hope this will inspire others to
work in this fascinating arca in which participation has
been discouraged in the recent past by a nearly total gov-
ernment monopoly.
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https://faculty.nps.edu/dedennin/publications/Denning-CryptographyDataSecurity.pdf

FIGURE 1.18 Complexity classes.

PSPACE - Complete

e ——
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In order to develop large, secure, telecommunications
systems, this must be changed. A large number of users n
results in an even larger number, (n? — n)/2 potential pairs
who may wish to communicate privately from all others.

The new tech;ique makes use of the apparent difficulty
of computing logarithms over a finite field GF(q) with a
prime number ¢ of elements. Let

Y=aXmodg, forl <X <gq-1, (4)

where « is a fixed primitive element of GF(g), then X is
referred to as the logarithm of Y to the base a, mod g:

X =log, Y mod q, fori1=Y =< 1 e (5)

Calculation of Y from X is easy, taking at most 2 X logs g
multiplications [6, pp. 398-422]. For example, for X =
18,

V= al® = (((a2)2)2)2 X a2 (6)
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RSA vs. DH

* Diffie-Hellman (1976)

« Key exchange
* Both sides get to choose something random
« RSA (1977)

* Encryption
« Signatures

33



Multiplication is polynomial time in number
of digits (O(n?) or O(n log n))

468..
1 3754
276
0
316

—

~=>0
b~

1
1



Modular exponentiation

153%%° (mod 251)

Naive way: multiply 153 times itself 189 times.
Won't work for, e.g., 2048-bit numbers In the
exponent



Better way (all mod 251)

153°=1 153° = 140
153* = 153 153" =22
153% = 66 15332 = 233
1534 =89 153% =173

1531%% = 58



1. Repeated squaring

2. Don’t forget the modulus



Better way
* 189 in binary is 0b10111101

o 189 =1%27+ 0*2° + 1*2° + 1*24 + 1*23 + 1*22 + 0*2! + 1*2°

e 15318 (mod 251) = 153(128+0+32+16+8+4+0+1) (mod 257)
= 15318* 15332* 153 * 1538 * 153** 153 (mod 251)
=58 *233*22* 140 * 89 * 153 (mod 251)
=73



& WolframAlpha e

58 *233 * 22 * 140 * 89 * 153 (mod 251) o8
X NATURAL LANGUAGE | f§5 MATH INPUT B EXTENDED KEYBOARD  ::3 EXAMPLES % UPLOAD 24 RANDOM
Input

(58 <233 « 22 - 140 < 89 ~ 153) mod 251

Result

73



¥ WolframAlpha e

(153189) mod 251 _
¥ NATURAL LANGUAGE | f7a MATH INPUT [ EXTENDED KEYBOARD 33 EXAMPLES # UPLOAD >4 RANDOM
Input
153'%? mod 251
Result

73



15319 = 73 (mod 251)
189 = |Og153 73 (mOd 251)



153777 = 73 (mod 251)
P77 = |0g153 73 (mOd 251)

This is called the discrete logarithm, and there is no known algorithm for
solving it in the general case that is polynomial in the number of digits.



15319 = 73 (mod 251)
153% = 73 (mod 251)



15319 = 73 (mod 251)
153% = 73 (mod 251)



153189 =
= 153% =
= 73 (mod 251)



An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, ...



Undo

81 mod 31

00

- -

81 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, 3*=19, ...



Undo

81 mod 31

19x19

361 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 3%=9, 3*=19, 38=20, ...



Undo

361 mod 31

20x=20

400 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 3%=9, 3%=19, 38=20, 31°=28...



Undo

400 mod 31

28x=3

84 mod 31

mod




An example...

e 3 mod 31 = 33 mod 31 =22
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, 34=19, 38=20, 31°=28...



17 in binary is 0b10001



Cryptography Engineering by Ferguson et al.

Design
Principles
and Practical
Applications

Niels Ferguson
Bruce Schneier
Tadayoshi Kohno
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