Signals and Event-Based I/0

CSE 536 Spring 2024
jedimaestro@asu.edu

Why Event-Based 1/0?

* Multithreading can lead to a lot of errors, complexity
* Blocking is bad for performance

« Blocking means your process is put in a wait queue because
of a system call you made, basically

UNIX signals
poll and ppoll()
select() and pselect()

epoll()
kqueue()

Outline

server [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

jedi@server:™% cat musignals.c
#include <stdio.h:
#include <stdlib.h:
winclude <signal.h:

wvold sig_handler(int signum)
i

;

printf{"Received signal %dwn'', signum);

wolid other_sig_handler(int signum)
i

;

printf ("Got signal dwn'', signum);

int maing)

i
51gnal (SIGINT, sig_handler);
signal (SIGUSR1, sig_handler);
signal (SIGUSRZ, other_sig_handler);
signal (SIGFPE, other_sig_handler);
whileil);
return o;

i

Jedi@server: ™% gococ mysignals.c -0 mysignals

jedi@server:™% ./ musiznals

Received signal 2

Received signal 10

VR _

Right Ctrl

server [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
pidof mysignals

kill -SIGINT 2980
kill -SIGUSR1 2980
kill -5IGUSRZ 2980
kill -SIGFPE 2980
kill -SIGFIPE 2980

Right Ctrl

poll()

* Wait for one or more file descriptors to become ready for
use

* Positives

* POSIX (Portable Operating System Interface, from IEEE)
« can be used on Linux, BSD flavors, etc.

* Negatives
* Does not scale to many file descriptors

Cruct pollfd Tds[2];
int ret;

1 :-=' inpuct °©
STDIN_FILENOD;
eyents = POLLIN;

..- ;.:I :I--. .. & - A
STDOUT_FILEND;
eyents = POLLOUT;

1(fds, 2, TIMEOUT * 1000};

https://github.com/raoulmillais/linux-system-programming/blob/master/src/poll-example.c

ppoll()

A race condition can occur if there are any signal
handlers registered, ppoll() atomically handles signals,
applies a sigmask, and saves new incoming signals to
the end

More detalls below in description of pselect()

select()

« Like poll(), but older and clunkier

jedi@tortuga: ~

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

void FD_CLR(int fd, fd_set #set);
int FD_ISSET(int fd, fd_set #set);
void FD_SET(int fd, fd_set *set);
void FD_ZERO(fd_set *set);

int pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, const struct timespec *timeout,
const sigset_t #sigmask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
pselect(): _POSIX_C_SOURCE >= 200112L

DESCRIPTION
select() allows a program to monitor multiple file descriptors, waiting
until one or more of the file descriptors become "ready" for some class
of I/0 operation (e.g., input possible). A file descriptor is consid-
ered ready if it is possible to perform a corresponding I/0 operation
(e.g., read(2), or a sufficiently small write(2)) without blocking.

select() can monitor only file descriptors numbers that are 1less than
FD_SETSIZE; poll(2) and epoll(7) do not have this limitation. See
BUGS.

Manual page select(2) line 9 (press h for help or q to quit)Jj

jedi@tortuga: ~

a
pselect|Q)

The [ENEaa3d() system call allows an application to safely wait until
either a file descriptor becomes ready or until a signal 1s caught.

The operation of select() and [XI3R3ad() is identical, other than these
three differences:

select() wuses a timeout that is a struct timeval (with seconds and
microseconds), while [II3Raad() uses a struct timespec (with seconds
and nanoseconds).

select() may update the timeout argument to indicate how much time
was left. [T3R3ad() does not change this argument.

select() has no sigmask argument, and behaves as [RIiRkaad() called
with NULL sigmask.

sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is
not NULL, then [J3K3a4d() first replaces the current signal mask by the
one pointed to by sigmask, then does the "select" function, and then
restores the original signal mask. (If sigmask is NULL, the signal
mask is not modified during the [JRkaaq() call.)

Other than the difference in the precision of the timeout argument, the

following IRakaad() call:

ARYAd(nfds, Sreadfds, Gwritefds, &exceptfds,
Manual page select(2) line 132 (press h for help or g to

jedi@tortuga: ~

Other than the difference in the precision of the timeout argument, the

following [EXaEIad() call:

ready = [FIIRd(nfds, &readfds, Gwritefds, Gexceptfds,
timeout, &sigmask);

is equivalent to atomically executing the following calls:
sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, Sexceptfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The reason that [TXIk3%4() is needed is that if one wants to wait for
either a signal or for a file descriptor to become ready, then an
atomic test is needed to prevent race conditions. (Suppose the signal
handler sets a global flag and returns. Then a test of this global
flag followed by a call of select() could hang indefinitely if the sig-
nal arrived just after the test but just before the call. By contrast,
MARI() allows one to first block signals, handle the signals that
have come in, then call [RI3kaad() with the desired sigmask, avoiding
the race.)

The timeout
The timeout argument for select() is a structure of the following type:

Manual page select(2) line 154 (press h for help or q to quit)fj

epoll()

* Negatives

* Not POSIX, Linux-specific

« Slightly more complex to use than poll()
* Positives

Number of File Descriptors poll() CPU time select() CPU time epoli() CPU time

10 0.61 0.73 0.41
100 29 3 0.42
1000 35 35 0.53
10000 990 930 0.66

The Linux Programming Interface, section 63.4.5

13

https://suchprogramming.com/epoll-in-3-easy-steps/

Examples from
https://suchprogramming.com/epoll-in-3-easy-steps/

14

https://suchprogramming.com/epoll-in-3-easy-steps/

.‘ { Step 1: Create epoll file descriptor

OA First I'll go through the process of just creating and closing an epoll instance.

#include =stdio.h=
.‘ (#include <unistd.h>
#include <sys/epoll.h=
OA

int main()
{
int epoll fd = {8):

if (epoll fd == -1) {
fprintf(stderr, "Failed to create epoll file descriptor\n");
return 1;

(epoll fd)) {
fprintf(stderr, "Failed to close epoll file descriptorin");
return 1;

Step 2: Add file descriptors for epoll to watch

The next thing to do is tell epoll what file descriptors to watch and what kinds of events to waitch for. In this example I'll
use one of my favorite file descriptors in Linux, good ol file descriptor @ (also known as Standard Input).

nclude <stdio.h=
#include <unistd.h>
#include <sys/epoll.h>

int main()
{
struct epoll event event;
int epoll fd = (0);

if (epoll fd == -1} {
fprintf(stderr, "Failed to create epoll file descriptorin");
return 1;

}

event. = EPOLLIN;
event. ; = B;

(epoll fd, EPOLL CTL ADD, @, &event)) {
fprintf(stderr, "Failed to add file descriptor to epoll\n"};
(epoll fd);

ik

(epoll fd)) {
fprintf(stderr, "Failed to close epoll file descriptorin");

return 1;

Step 3: Profit

That's right! We're almost there. Now let epall do it's magic.

while (running) {

printf("\nPolling for input...\n");

event count = (epoll fd, events, MAX EVENTS, 30000),

printf("%sd ready events\n", event count);

for (i1 =0; i < event count; i++) {
printf("Reading file descriptor '%d' -- ", events[i]. :
bytes read = (events[i]. .fd, read buffer, READ SIZ
printf("%zd bytes read.\n", bytes read);
read buffer[bytes read] = '\0',;
printf("Read '%s'\n", read buffer),

if('!'strncmp(read buffer, "stop\n", 5))
running = 0;

Why is epoll() faster?

18

Type
Invented

Invented
by

Red-black tree

Tree
1978

Leonidas J. Guibas and Robert
Sedgewick

Complexities in big O notation

Space

Function
Search
Insert

Delete

Space complexity
O(n)

Time complexity

Amortized Worst Case
O(logn)™ O(logn)™
O(1)P O(logn)]
O(1)P O(logn)™

Figure 1

. ... with explicit NIL leaves

19

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Edge- vs. level-triggered?

20

21

jedi@tortuga: ~

Level-triggered and edge-triggered
The epoll event distribution interface is able to behave both as edge-trig-
gered (ET) and as level-triggered (LT). The difference between the two
mechanisms can be described as follows. Suppose that this scenario happens:

1. The file descriptor that represents the read side of a pipe (rfd) is reg-
istered on the epoll instance.

. A pipe writer writes 2 kB of data on the write side of the pipe.

. A call to epoll_wait(2) is done that will return rfd as a ready file de-
scriptor.

. The pipe reader reads 1 kB of data from rfd.

5. A call to epoll_wait(2) is done.

If the rfd file descriptor has been added to the epoll interface using the
EPOLLET (edge-triggered) flag, the call to epoll_wait(2) done in step 5 will
probably hang despite the available data still present in the file input
buffer; meanwhile the remote peer might be expecting a response based on the
data 1t already sent. The reason for this is that edge-triggered mode de-
livers events only when changes occur on the monitored file descriptor. So,
in step 5 the caller might end up waiting for some data that is already
present inside the input buffer. In the above example, an event on rfd will
be generated because of the write done in 2 and the event 1is consumed 1n 3.
Since the read operation done in & does not consume the whole buffer data,

Manual page epoll(7) line 42 (press h for help or q to quit)}

jedi@tortuga: ~

5. A call to epoll_wait(2) is done.

If the rfd file descriptor has been added to the epoll interface using the
EPOLLET (edge-triggered) flag, the call to epoll_wait(2) done in step 5 will
probably hang despite the available data still present in the file input
buffer; meanwhile the remote peer might be expecting a response based on the
data 1t already sent. The reason for this is that edge-triggered mode de-
livers events only when changes occur on the monitored file descriptor. So,
in step 5 the caller might end up waiting for some data that is already
present inside the input buffer. In the above example, an event on rfd will
be generated because of the write done in 2 and the event is consumed in 3.
Since the read operation done in 4 does not consume the whole buffer data,
the call to epoll_wait(2) done in step 5 might block indefinitely.

An application that employs the EPOLLET flag should use nonblocking file de-
scriptors to avoid having a blocking read or write starve a task that 1is
handling multiple file descriptors. The suggested way to use epoll as an
edge-triggered (EPOLLET) interface is as follows:

a) with nonblocking file descriptors; and
b) by waiting for an event only after read(2) or write(2) return EAGAIN.
By contrast, when used as a level-triggered interface (the default, when

EPOLLET is not specified), epoll is simply a faster poll(2), and can be used
wherever the latter is used since it shares the same semantics.

Manual page epoll(7) line 57 (press h for help or q to quit)}

jedi@tortuga: ~

Since even with edge-triggered epoll, multiple events can be generated upon
receipt of multiple chunks of data, the caller has the option to specify the
EPOLLONESHOT flag, to tell epoll to disable the associated file descriptor
after the receipt of an event with epoll_wait(2). When the EPOLLONESHOT
flag is specified, it 1s the caller's responsibility to rearm the file de-
scriptor using epoll_ctl(2) with EPOLL_CTL_MOD.

If multiple threads (or processes, if child processes have inherited the
epoll file descriptor across fork(2)) are blocked in epoll_wait(2) waiting
on the same epoll file descriptor and a file descriptor in the interest list
that is marked for edge-triggered (EPOLLET) notification becomes ready, just
one of the threads (or processes) is awoken from epoll_wait(2). This pro-
vides a useful optimization for avoiding "thundering herd" wake-ups in some
scenarios.

Interaction with autosleep
If the system 1is 1in autosleep mode via /sys/power/autosleep and an event
happens which wakes the device from sleep, the device driver will keep the
device awake only until that event is queued. To keep the device awake un-
til the event has been processed, it is necessary to use the epoll_ctl(2)
EPOLLWAKEUP flag.

When the EPOLLWAKEUP flag 1s set 1in the events field for a struct
epoll_event, the system will be kept awake from the moment the event 1is
queued, through the epoll_wait(2) call which returns the event until the
subsequent epoll_wait(2) call. If the event should keep the system awake

Manual page epoll(7) line 83 (press h for help or q to quit)Jj

“In computer science, the thundering herd problem
occurs when a large number of processes or threads
waiting for an event are awoken when that event occurs,
but only one process is able to handle the event. When
the processes wake up, they will each try to handle the
event, but only one will win. All processes will compete
for resources, possibly freezing the computer, until the
herd is calmed down again.”

25

https://en.wikipedia.org/wiki/Thundering_herd_problem

Use case: Tor

Overlay network that provides anonymity and censorship
resistance

Easy to use (Tor browser), open source, friendly to
academics (and lots of data)

Uses epoll() for Linux and kqueue() for BSD flavors

26

H) How Tor Works: 2

Alice

B = e =

Step 2: Alice's Tor client
picks a random path to
destination server. Green -
links are encrypted, red

links are in the clear.

—

-

Dave —

E::I Tor node

« « ¢ Unencrypted link
—p encrypted link

27

https://en.wikipedia.org/wiki/Tor_(network)

Some metrics from

28

https://metrics.torproject.org/

9‘%@

oo?%?o o??% OCP?CI)O o???oo

I@

8 000 000 -

6 000 000 -

4 000 000 -

2 000 000 -

2024-01

Directly connecting users

2024-02

2024-03

The Tor Project - https://metrics.torproject.org/

29

O—— Number of relays

OO 40900- — Relays
—— Bridges
o0

T

@

OO 2024-01 2024-02 2024-03

O_C The Tor Project - https://metrics.torproject.org/ 30

?‘fi

800 Gbit/s -

600 Gbit/s -

400 Gbit/s -

200 Gbit/s -

0 Gbit/s -
800 Gbit/s -

600 Gbit/s -

400 Gbit/s =

200 Gbit/s -

0 Gbit/s -

oo‘??% o???o o???o o???oo

I?

Advertised and consumed bandwidth by relay flags

. Exit only . Guard and Exit Guard only . Meither Guard nor Exit

2024-01 2024-02 2024-03

The Tor Project - https://metrics.torproject.org/

YIpIMpueq PasRIaApY

yIpIMpUEq PAWNSUOD

31

What is kqueue()

Similar to epoll(), but for BSD flavors

“Kgueue allows one to batch modify watcher states and to retrieve
watcher states in a single system call. With epoll, you have to call a
system call for every modification. Kqueue also allows one to watch
for things like filesystem changes and process state changes, epoll
IS limited to socket/pipe I/O only.”

--asomiv,
Linux has inotify()

libuv and libevent support kqueue(), epoll(), and alternatives such as
Solaris I/O completion ports, Windows IOCP, etc.

32

https://news.ycombinator.com/item?id=3028687

We’ve mentioned Solaris a few times, now
seeing a difference from Linux vs. BSD, and
we’ve largely ignored Windows this semester.
Now’s a good time for a 5-minute digression into
OS history...

33

1969

1971 10 1973

1974 1o 1975

1978

1979

1581

1987
1988
1989

1991

2001 1o 2004

2006 o 2007

2012 to 2015
2016
2017
208
2019

Unix-il Systems

1969
- Opan source
I:I M 1971 10 1973
. el 1974 10 1875
1978

1979
https://www.reddit.com/r/linux/comments/huhqgrh/unix_family_tree/

1980
18481
1982
1983
1584
1985
1986
1987
1988
1989

1930
1981

1992

1993
1994
1995
1696
1997
1998

1999

2001 10 2004

2006 to 2007

2012 o 2015
208
2017
208
2019

34

https://www.reddit.com/r/linux/comments/huhqrh/unix_family_tree/

ol(chgel (Chpellchacl Chae) haell

O—C 19w
00 ™

:OO: 1993
% =
oo =
O——— 190
O—C
O-O 2001 to 2004
e, ™
O_mmzoo?
O—C 2e
OO 20
OO 20
:O_CZ’OWto?mS
0.0 2016
O_O 2017
O_C 2018

O——— 21

36

1988
1989
1990
1991

1992

1993
1994
1995
1996
1997

1999
2000

2001 1o 2004
2005

2006 10 2007
2008
2009
2010
2m

2012 to 2015
2016

37

1978

1C&C

O muC

38

https://www.tech-insider.org/windows/research/1998/images/figure_01.gif

CPM -1974

Loading CPM.5Y5...

F-M-86 for the IBHM PC-XT-AT, Vers. 1.1 (Patched)

opyright (C) 1983, Digital Research

ardware Supported :

Diskette Drivel(s)
Hard Disk Driuve(s)
Parallel Printer(s)
serial Port(s)
Memory (Kb)

: PIP : 3TAT CHMD : SUBMIT CHD
: GENCHD : DDTB6 CMD : TOD CHD
: HELF : HELF HLP : 3Y¥3 CHD
: FORMAT : CLDIR CMD : WRTLDR CHD
: BOOTWIN : CPM H86 : WINSTALL SUB
: WCPH : DISKUTIL CHD

User O 0:00:11 Jan. 1, 2000

! ASMBG CHD
: ED CHD
: ASSIGN CHD
: BOOTPCDS S5YS
: FD CHD

https://en.wikipedia.org/wiki/CP/M#/media/File:CPM-86.png

February 3, 1976

An Open Letter to Hobbyists

To me, the most critical thing in the hobby market right now
is the lack of good software courses, boocks and software itself,
Without good software and an owner who understands programming, a
hobby computer is wasted. Will guality software be written for the
hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, impreving and adding fea-
tures ko BASIC. HNow we have 4K, 8K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

[See the fulll letter at]

I would appreciate letters from any one who wants to pay up, or
has a suggestion or comment. Just write me at 1180 Alvarado SE, #114,
Albuguerque, New Mexico, 87108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

' Bl Ditw

Bill gates
General Partner, Micro-Soft

https://en.wikipedia.org/wiki/File:Bill_Gates_Letter_to_Hobbyists_ocr.pdf

QDOS - 1979

41

https://en.wikipedia.org/wiki/86-DOS#/media/File:86-DOS_running_assembler_and_HEX2BIN_(screenshot).png

MS-DOS - 1981

starting Mo-D0OS. ..

42

https://upload.wikimedia.org/wikipedia/commons/b/b6/StartingMsdos.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

