
Concurrency basics

CSE 536 Spring 2024
jedimaestro@asu.edu



  2

Outline

● Review about race conditions and locks
● Deadlocks and starvation
● Semaphores
● Producer consumer
● Dining philosophers
● Mutex’s, monitors and, futex’s
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Review: this is a race condition without the lock

● Thread #1
lock(L)
x := x + 1
unlock(L)

Lock L
Move x into Register
Add 1 to Register
Move Register into x
Unlock L

● Thread #2
lock(L)
x := x + 1
unlock(L)

Lock L
Move x into Register
Add 1 to Register
Move Register into x
Unlock L
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Terminology: the code between the lock and 
unlock is called the critical section.
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Source: Patrick Bridges’ slides…
https://www.cs.unm.edu/~crandall/operatingsyste
ms20/slides/31-Concurrency-Bugs-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/31-Concurrency-Bugs-Deadlock.pdf
https://www.cs.unm.edu/~crandall/operatingsystems20/slides/31-Concurrency-Bugs-Deadlock.pdf


  6

Deadlock conditions

● All four conditions must be met for deadlock to occur, 
i.e., if you break any of these you have mitigated 
deadlocks

● Mutual exclusion (exclusive access to resources)
● Hold-and-wait (hold resources while obtaining others)
● No preemption (can’t take resources away from threads)
● Circular wait (circular chain of threads waiting on resources)
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Break circular wait

● Programming discipline, no OS support needed
● Always grab locks in the same order
● E.g., always grab Lock1 before Lock2, and always grab 

Lock3 last
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Breaking hold-and-wait

● Grab all locks at the same time, atomically, by defining a 
global lock, e.g.:

Lock(GlobalLock);
Lock(Lock1);
Lock(Lock3);
Unlock(GlobalLock);

● Not good for parallelism
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Breaking no preemption 

● Problem: live lock
● Solution: random delay
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Breaking mutual exclusion
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https://en.wikipedia.org/wiki/Dining_philosophers_problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem
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Requirements

● No deadlocks
● No starvation
● High degree of parellelism
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Semaphores

● Invented by Edsger Dijkstra in 1962 or 1963
● https://en.wikipedia.org/wiki/Semaphore_(programming)

https://en.wikipedia.org/wiki/Electrologica_X8#/media/File:Electrologica_X8.jpg

https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Electrologica_X8#/media/File:Electrologica_X8.jpg
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https://en.wikipedia.org/wiki/Semaphore_(programming)#/media/File:Rail-semaphore-signal-Dave-F.jpg

https://en.wikipedia.org/wiki/Semaphore_(programming)#/media/File:Rail-semaphore-signal-Dave-F.jpg
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Semaphore operations

● wait
● Also known as

● P
● proberen
● prolaag
● down
● acquire

● signal
● Also known as

● V
● verhogen
● vrijgave
● up
● release
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Things we can do with semaphores

● Locks
● a.k.a. binary semaphores

● Producer-consumer
● uses binary and counting semaphores

● Dining philosophers solution
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Atomic operations
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Producer-Consumer Problem

● Producer produces items
● Consumer consumes them
● Can have multiple producers and consumers running in 

parallel
● Requirements:

● Concurrency (if there’s work to do and a thread to do it, they 
should do it...)

● No race conditions
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https://en.wikipedia.org/wiki/Dining_philosophers_problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem
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https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf
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https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

Deadlock!

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf
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https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf
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https://en.wikipedia.org/wiki/Lock_(computer_science)

● “While a binary semaphore may be colloquially referred to as a mutex, a 
true mutex has a more specific use-case and definition, in that only the task 
that locked the mutex is supposed to unlock it.”

● Basic problem with sempahores: you have no idea which thread is holding 
which resource

● “a true mutex has a more specific use-case and definition, in that only the 
task that locked the mutex is supposed to unlock it”

● Implies OS support, or some type of runtime environment + memory safety
● If you wrap a mutex in an object-like programming construct you can call it 

a monitor
● Ada, C#, Java, Go, Mesa, Python, ... 

https://en.wikipedia.org/wiki/Lock_(computer_science)
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Problems with semaphores

● Priority inversion (vs. OS can do priority inheritance)
● Premature task termination (vs. OS can release 

mutexes)
● Termination deadlock (vs. OS can release mutexes)
● Recursion deadlock (vs. mutexes can be reentrant)
● Accidental release (vs. OS can raise an error)
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Back down to hardware-level and OS-level 
things (slides by Patrick Bridges)…

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/26-Concurrency-Critical-Sections-2.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/26-Concurrency-Critical-Sections-2.pdf
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Need OS support

● Spinning to wait for a lock uses up 100% of a CPU when 
you’re scheduled

● Do this instead...
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Linux’s futex (similar to setpark, park, 
and unpark on Solaris)



  30

Can we use semaphores, mutexes, etc. for this?

https://dl.acm.org/doi/pdf/10.1145/151233.151240

https://dl.acm.org/doi/pdf/10.1145/151233.151240
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Coming up...

● poll(), select(), and epoll()
● Event-based and asynchronous I/O

● Message passing
● Remote Procedure Calls
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