
Concurrency basics

CSE 536 Spring 2024
jedimaestro@asu.edu

 2

Outline

● Review about race conditions and locks
● Deadlocks and starvation
● Semaphores
● Producer consumer
● Dining philosophers
● Mutex’s, monitors and, futex’s

 3

Review: this is a race condition without the lock

● Thread #1
lock(L)
x := x + 1
unlock(L)

Lock L
Move x into Register
Add 1 to Register
Move Register into x
Unlock L

● Thread #2
lock(L)
x := x + 1
unlock(L)

Lock L
Move x into Register
Add 1 to Register
Move Register into x
Unlock L

 4

Terminology: the code between the lock and
unlock is called the critical section.

 5

Source: Patrick Bridges’ slides…
https://www.cs.unm.edu/~crandall/operatingsyste
ms20/slides/31-Concurrency-Bugs-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/31-Concurrency-Bugs-Deadlock.pdf
https://www.cs.unm.edu/~crandall/operatingsystems20/slides/31-Concurrency-Bugs-Deadlock.pdf

 6

Deadlock conditions

● All four conditions must be met for deadlock to occur,
i.e., if you break any of these you have mitigated
deadlocks

● Mutual exclusion (exclusive access to resources)
● Hold-and-wait (hold resources while obtaining others)
● No preemption (can’t take resources away from threads)
● Circular wait (circular chain of threads waiting on resources)

 7

T1

T2T3

Lock2

Lock3

Lock1

Is being
waited on by

Is being
waited on by

Is being
waited on by

Holds

Holds

Holds

 8

Break circular wait

● Programming discipline, no OS support needed
● Always grab locks in the same order
● E.g., always grab Lock1 before Lock2, and always grab

Lock3 last

 9

Breaking hold-and-wait

● Grab all locks at the same time, atomically, by defining a
global lock, e.g.:

Lock(GlobalLock);
Lock(Lock1);
Lock(Lock3);
Unlock(GlobalLock);

● Not good for parallelism

 10

Breaking no preemption

● Problem: live lock
● Solution: random delay

 11

Breaking mutual exclusion

 12

https://en.wikipedia.org/wiki/Dining_philosophers_problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem

 13

Requirements

● No deadlocks
● No starvation
● High degree of parellelism

 14

Semaphores

● Invented by Edsger Dijkstra in 1962 or 1963
● https://en.wikipedia.org/wiki/Semaphore_(programming)

https://en.wikipedia.org/wiki/Electrologica_X8#/media/File:Electrologica_X8.jpg

https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Electrologica_X8#/media/File:Electrologica_X8.jpg

 15
https://en.wikipedia.org/wiki/Semaphore_(programming)#/media/File:Rail-semaphore-signal-Dave-F.jpg

https://en.wikipedia.org/wiki/Semaphore_(programming)#/media/File:Rail-semaphore-signal-Dave-F.jpg

 16

Semaphore operations

● wait
● Also known as

● P
● proberen
● prolaag
● down
● acquire

● signal
● Also known as

● V
● verhogen
● vrijgave
● up
● release

 17

Things we can do with semaphores

● Locks
● a.k.a. binary semaphores

● Producer-consumer
● uses binary and counting semaphores

● Dining philosophers solution

 18

Atomic operations

 19

Producer-Consumer Problem

● Producer produces items
● Consumer consumes them
● Can have multiple producers and consumers running in

parallel
● Requirements:

● Concurrency (if there’s work to do and a thread to do it, they
should do it...)

● No race conditions

 20

 21

https://en.wikipedia.org/wiki/Dining_philosophers_problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem

 22
https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

 23
https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

Deadlock!

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

 24
https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/30-Concurrency-Bugs-Non-Deadlock.pdf

 25

https://en.wikipedia.org/wiki/Lock_(computer_science)

● “While a binary semaphore may be colloquially referred to as a mutex, a
true mutex has a more specific use-case and definition, in that only the task
that locked the mutex is supposed to unlock it.”

● Basic problem with sempahores: you have no idea which thread is holding
which resource

● “a true mutex has a more specific use-case and definition, in that only the
task that locked the mutex is supposed to unlock it”

● Implies OS support, or some type of runtime environment + memory safety
● If you wrap a mutex in an object-like programming construct you can call it

a monitor
● Ada, C#, Java, Go, Mesa, Python, ...

https://en.wikipedia.org/wiki/Lock_(computer_science)

 26

Problems with semaphores

● Priority inversion (vs. OS can do priority inheritance)
● Premature task termination (vs. OS can release

mutexes)
● Termination deadlock (vs. OS can release mutexes)
● Recursion deadlock (vs. mutexes can be reentrant)
● Accidental release (vs. OS can raise an error)

 27

Back down to hardware-level and OS-level
things (slides by Patrick Bridges)…

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/26-Concurrency-Critical-Sections-2.pdf

https://www.cs.unm.edu/~crandall/operatingsystems20/slides/26-Concurrency-Critical-Sections-2.pdf

 28

Need OS support

● Spinning to wait for a lock uses up 100% of a CPU when
you’re scheduled

● Do this instead...

 29

Linux’s futex (similar to setpark, park,
and unpark on Solaris)

 30

Can we use semaphores, mutexes, etc. for this?

https://dl.acm.org/doi/pdf/10.1145/151233.151240

https://dl.acm.org/doi/pdf/10.1145/151233.151240

 31

Coming up...

● poll(), select(), and epoll()
● Event-based and asynchronous I/O

● Message passing
● Remote Procedure Calls

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

