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Consistency models

Strict consistency

- All reads and writes in the same order for every process
- More of a thought experiment

Sequential consistency
- Reads and writes for a process in order, all writes in FIFO order
Causal consistency

- Potentially causal writes seen in same order
— Concurrent writes can be in a different order

PRAM, others...
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https://lamport.azurewebsites.net/pubs/time-clocks.pdf

Remote Procedure Calls

* Basic idea: use something programmers are already familiar
with (calling a procedure and it returning a value)

- Make distributed computation easy

— Not rocket science

- Heavily used in practice

— Caller or callee can crash, doesn’t break everything


https://jedcrandall.github.io/courses/cse536spring2024/birrell842.pdf

shared addresses. Our 1ntuition is that with our hardware the cost of a shared
address space would exceed the additional benefits.

A principle that we used several times in making design choices is that the
semantics of remote procedure calls should be as close as possible to those of
local (single-machine) procedure calls. This principle seems attractive as a way
of ensuring that the RPC facility is easy to use, particularly for programmers
familiar with single-machine use of our languages and packages. Violation of this
principle seemed likely to lead us into the complexities that have made previous
communication packages and protocols difficult to use. This principle has occa-
sionally caused us to deviate from designs that would seem attractive to those
more experienced in distributed computing. For example, we chose to have no
time-out mechanism limiting the duration of a remote call (in the absence of
machine or communication failures), whereas most communication packages
consider this a worthwhile feature. Our argument is that local procedure calls
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Fig.1. The components of the system, and their interactions for a simple call.
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Fig.2. The sequence of events in binding and a subsequent call. The callee machine exports the
remote interface with type A and instance B. The caller machine then imports that interface. We

then show the caller initiating a call to procedure F, which is the third procedure of that interface.
The return is not shown.



2. BINDING

There are two aspects to binding which we consider in turn. First, how does a
client of the binding mechanism specify what he wants to be bound to? Second,
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how does a caller determine the machine address of the callee and specify to the
callee the procedure to be invoked? The first is primarily a question of naming
and the second a question of location.

2.1 Naming

The binding operation offered by our RPC package is to bind an importer of an
interface to an exporter of an interface. After binding, calls made by the importer
invoke procedures implemented by the (remote) exporter. There are two parts to
the name of an interface: the type and the instance. The type is intended to
specify, at some level of abstraction, which interface the caller expects the callee
to implement. The instance is intended to specify which particular implementor
of an abstract interface is desired. For example, the type of an interface might
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Terminology

* Marshalling (not in the paper, but implied).. packing and
unpacking (unmarshalling) the parameters

- Necessary because of differences in machines, representations

12
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Thus, the programmer does not need to build detailed communication-related
code. After designing the interface, he need only write the user and server code.
Lupine is responsible for generating the code for packing and unpacking argu-
ments and results (and other details of parameter/result semantics), and for
dispatching to the correct procedure for an incoming call in the server-stub.
RPCRuntime is responsible for packet-level communications. The programmer
must avoid specifying arguments or results that are incompatible with the lack
of shared address space. (Lupine checks this avoidance.) The programmer must
also take steps to invoke the intermachine binding described in Section 2, and to
handle reported machine or communication failures.
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Fig. 3. The packets transmitted during a simple call.
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Fig. 4. A complicated call. The arguments occupy two packets. The call duration is long enough to
require retransmission of the last argument packet requesting an acknowledgment, and the result
packet is retransmitted requesting an acknowledgment because no subsequent call arrived.




Where does the “this solves the concurrency
problem” part come?
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to create the connection implicitly. When the connection is active (when there
is a call being handled, or when the last result packet of the call has not yet been
acknowledged), both ends maintain significant amounts of state information.
However, when the connection is idle the only state information in the server
machine is the entry in its table of sequence numbers. A caller has minimal state
information when a connection is idle: a single machine-wide counter is sufficient.
When initiating a new call, its sequence number is just the next value of this
counter. This i1s why sequence numbers in the calls from an activity are required
- only to be monotonic, not sequential. When a connection is idle, no process in
either machine is concerned with the connection. No ecommunications (such as
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We are still in the early stages of acquiring experience with the use of RPC
and certainly more work needs to be done. We will have much more confidence
in the strength of our design and the appropriateness of RPC when it has been
used 1n earnest by the projects that are now committing to it. There are certain
circumstances in which RPC seems to be the wrong communication paradigm.
These correspond to situations where solutions based on multicasting or broad-
casting seem more appropriate [2]. It may be that in a distributed environment
there are times when procedure calls (together with our language’s parallel
processing and coroutine facilities) are not a sufficiently powerful tool, even
though there do not appear to be any such situations in a single machine.

One of our hopes in providing an RPC package with high performance and low
cost is that it will encourage the development of new distributed applications
that were formerly infeasible. At present it is hard to justify some of our insistence
on good performance because we lack examples demonstrating the importance of
such performance. But our belief is that the examples will come: the present lack
is due to the fact that, historically, distributed communication has been incon-
venient and slow. Already we are starting to see distributed algorithms being
developed that are not considered a major undertaking; if this trend continues
we will have been successful.
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RPC

e RPC is not rocket science

* However, it's how most of the world does distributed computing

- Java, Go, Python, Rust, .NET...

- NFS, SunRPC, D-Bus, SOAP, WCF, DCOM, Google’s protobufs,
Google Web toolkit

* Do you think HTTP GET and POST requests are RPC?
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Why not just use RPC all the time?
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Disadvantages to RPC

* Multicast and broadcast are not well supported
 What if a process is physically moving?

e Caller blocks until they get a response, unless they fork a
thread but then they still need to think about concurrency issues
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Can we use semaphores, mutexes, etc. for this?
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* Message passing

Coming up...
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