Distibuted Shared Memory and
Remote Procedure Calls

CSE 536 Spring 2024
jedimaestro@asu.edu

Outline

e Distributed Shared Memory
— Consistency models
 Remote Procedure Calls

https://en.wikipedia.org/wiki/Distributed _shared _memory

Process Process Process
A A A
Invocation response response response
Invocation Invocation
Memory Memory Memory
manager manager manager

M

Shared Virtual memory

Distributed shared memory

https://en.wikipedia.org/wiki/Distributed_shared_memory

Current Mode |8 Writing to a Block/
Current Mode is Reading an unowned bloc k

Another Node
iz WWriting
to the Block

Current Node

Another Node is T,
i Writing to the Block
Reading the Block g

Another Mode |s Writing
to the Block

Current Mode is Reading Already Owned Block

Consistency models

Strict consistency

- All reads and writes in the same order for every process
- More of a thought experiment

Sequential consistency
- Reads and writes for a process in order, all writes in FIFO order
Causal consistency

- Potentially causal writes seen in same order
— Concurrent writes can be in a different order

PRAM, others...

O ssaooad _
i
_

_
i
_
!
_
i

Fig. 3.

d Sssooud

https://lamport.azurewebsites.net/pubs/time-clocks.pdf

Remote Procedure Calls

* Basic idea: use something programmers are already familiar
with (calling a procedure and it returning a value)

- Make distributed computation easy

— Not rocket science

- Heavily used in practice

— Caller or callee can crash, doesn’t break everything

https://jedcrandall.github.io/courses/cse536spring2024/birrell842.pdf

shared addresses. Our 1ntuition is that with our hardware the cost of a shared
address space would exceed the additional benefits.

A principle that we used several times in making design choices is that the
semantics of remote procedure calls should be as close as possible to those of
local (single-machine) procedure calls. This principle seems attractive as a way
of ensuring that the RPC facility is easy to use, particularly for programmers
familiar with single-machine use of our languages and packages. Violation of this
principle seemed likely to lead us into the complexities that have made previous
communication packages and protocols difficult to use. This principle has occa-
sionally caused us to deviate from designs that would seem attractive to those
more experienced in distributed computing. For example, we chose to have no
time-out mechanism limiting the duration of a remote call (in the absence of
machine or communication failures), whereas most communication packages
consider this a worthwhile feature. Our argument is that local procedure calls

have nn time-nnt machaniam and anr lanoniaocee infrlida mechaniame tn ahart an

8

Caller machine Network Callee machine

User User-stub RPCRuntime RPCRuntime Server-stub Server
Call packet

iocal elpack —) transmit) receive %unpack —)call

jcall rgument \[/ argument 1/
wait work

local npack \l/ Resulit packet pack \1/

return sult ié receive (transmit eresu It é return

importer exporter importer exporter

interface interface

Fig.1. The components of the system, and their interactions for a simple call.

Caller machine Grapevineg Callee machina

User User-stub RPCRuntime RPCRuntime Server-stub Server
Record in leExpon[‘e Export[
tabile; AB, A,B]

\I, ...

Do update (—~ SetConnect
L

Do update %‘ Addmember

return
Import[Import[
A,B] % A,B] %Gaicmne:t % Loockup
]

Bind[A,B] Table
Record lookup

xeFlyl) F=>3 |-y transmit XGHWUID 13 =>F H*"Fﬁ-’]

in table

importer exporter importer exporter
interface interface

Fig.2. The sequence of events in binding and a subsequent call. The callee machine exports the
remote interface with type A and instance B. The caller machine then imports that interface. We

then show the caller initiating a call to procedure F, which is the third procedure of that interface.
The return is not shown.

2. BINDING

There are two aspects to binding which we consider in turn. First, how does a
client of the binding mechanism specify what he wants to be bound to? Second,

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

Implementing Remote Procedure Calls 5 45

how does a caller determine the machine address of the callee and specify to the
callee the procedure to be invoked? The first is primarily a question of naming
and the second a question of location.

2.1 Naming

The binding operation offered by our RPC package is to bind an importer of an
interface to an exporter of an interface. After binding, calls made by the importer
invoke procedures implemented by the (remote) exporter. There are two parts to
the name of an interface: the type and the instance. The type is intended to
specify, at some level of abstraction, which interface the caller expects the callee
to implement. The instance is intended to specify which particular implementor
of an abstract interface is desired. For example, the type of an interface might

PR [TR T R (Y IR . LI 1 JHPR.A [- I R T S RN, [[, |

Terminology

* Marshalling (not in the paper, but implied).. packing and
unpacking (unmarshalling) the parameters

- Necessary because of differences in machines, representations

12

WAALY A% A ¥ Wil WIVLAAF AL AFULALALA VW WALALW %A ¥V Wi s

Thus, the programmer does not need to build detailed communication-related
code. After designing the interface, he need only write the user and server code.
Lupine is responsible for generating the code for packing and unpacking argu-
ments and results (and other details of parameter/result semantics), and for
dispatching to the correct procedure for an incoming call in the server-stub.
RPCRuntime is responsible for packet-level communications. The programmer
must avoid specifying arguments or results that are incompatible with the lack
of shared address space. (Lupine checks this avoidance.) The programmer must
also take steps to invoke the intermachine binding described in Section 2, and to
handle reported machine or communication failures.

13

Caller machine

User

RPC + Stub

Callea machina

Call[CalllD, dispatcherHint,

Jﬂﬂrﬂ:ﬁll pkt

await ack
or result

N2

return

dispatcherlD, procedure, arguments) >’

(Result[CalllD, results]

RPC + Stub Server
invoke proc % do call
send results return

ﬁ

Fig. 3. The packets transmitted during a simple call.

Caller machine

Callee machine
User RPC + Stub RPC + Stub Server
Call[CalliD, Pkt =0, i
cali 4 sand call pkt [DI] Start arg record
Wait for ack \L
Ack[CalliD, Pkt = 0]
acknowledge
build next phkt wait next pkt
Transmit it Data[CalliD, Pkt =1, dontAck,] invoke call % doical
Wait for pkt
] 1] = | e
i ata[CalllD, Pkt =1, pleaseAck, |

Ack[CalliD, Pkt =1]

maml ack \L

acknowledge
Wait for result
\J/ Result[CalllD, Pkt = 2, tA b
esu i =2 d By
< returm K ! SAAGK] Send result e raturn
Wait for ack
Result{CalliD, Pkt =
esult[CalllD, Pkt = 2, pleaseAck.] —..
\I/ Wait for ack
Ack[CalllD, Pkt = 2] \l/

acknowledge

) Idle

Fig. 4. A complicated call. The arguments occupy two packets. The call duration is long enough to
require retransmission of the last argument packet requesting an acknowledgment, and the result
packet is retransmitted requesting an acknowledgment because no subsequent call arrived.

Where does the “this solves the concurrency
problem” part come?

16

to create the connection implicitly. When the connection is active (when there
is a call being handled, or when the last result packet of the call has not yet been
acknowledged), both ends maintain significant amounts of state information.
However, when the connection is idle the only state information in the server
machine is the entry in its table of sequence numbers. A caller has minimal state
information when a connection is idle: a single machine-wide counter is sufficient.
When initiating a new call, its sequence number is just the next value of this
counter. This i1s why sequence numbers in the calls from an activity are required
- only to be monotonic, not sequential. When a connection is idle, no process in
either machine is concerned with the connection. No ecommunications (such as

17

O ssaooad _
i i
| *

_
i
_
!
_
i

Fig. 3.

d Sssooud

https://lamport.azurewebsites.net/pubs/time-clocks.pdf

We are still in the early stages of acquiring experience with the use of RPC
and certainly more work needs to be done. We will have much more confidence
in the strength of our design and the appropriateness of RPC when it has been
used 1n earnest by the projects that are now committing to it. There are certain
circumstances in which RPC seems to be the wrong communication paradigm.
These correspond to situations where solutions based on multicasting or broad-
casting seem more appropriate [2]. It may be that in a distributed environment
there are times when procedure calls (together with our language’s parallel
processing and coroutine facilities) are not a sufficiently powerful tool, even
though there do not appear to be any such situations in a single machine.

One of our hopes in providing an RPC package with high performance and low
cost is that it will encourage the development of new distributed applications
that were formerly infeasible. At present it is hard to justify some of our insistence
on good performance because we lack examples demonstrating the importance of
such performance. But our belief is that the examples will come: the present lack
is due to the fact that, historically, distributed communication has been incon-
venient and slow. Already we are starting to see distributed algorithms being
developed that are not considered a major undertaking; if this trend continues
we will have been successful.

20

https://en.m.wikipedia.org/wiki/Xerox_Star

RPC

e RPC is not rocket science

* However, it's how most of the world does distributed computing

- Java, Go, Python, Rust, .NET...

- NFS, SunRPC, D-Bus, SOAP, WCF, DCOM, Google’s protobufs,
Google Web toolkit

* Do you think HTTP GET and POST requests are RPC?

21

Why not just use RPC all the time?

22

Disadvantages to RPC

* Multicast and broadcast are not well supported
 What if a process is physically moving?

e Caller blocks until they get a response, unless they fork a
thread but then they still need to think about concurrency issues

23

Can we use semaphores, mutexes, etc. for this?

STATION e wee STATION ey STATION

it / s e
S f,l//”#f

CONTROL

24

https://dl.acm.org/doi/pdf/10.1145/151233.151240

* Message passing

Coming up...

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

