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Message passing vs. RPC
● Message passing

– Procedure not directly invoked 
by name

– Can be asynchronous, and 
typically is

– Multicast and broadcast are 
pretty natural to the abstraction

– Models of message passing (like 
π calculus) incorporate physics, 
are decentralized

● RPC
– Have to specify name of 

procedure you’re calling
– Can be non-blocking, i.e., 

asynchronous, but typically is 
not

– Not really a way to multicast or 
broadcast

– Need a central database of 
[type, instance] pairs
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Two cautionary notes

● Some people consider RPC to be a specific case of message 
passing
– Message passing libraries often offer RPC API built on top of message 

passing
● Message passing means a lot of different things to a lot of different 

people
– Object oriented people … It’s about modularity
– Distributed computing people … It’s a beautiful model of concurrency
– Microkernel people … It’s about robustness
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https://en.wikipedia.org/wiki/Message_passing

● “In computer science, message passing is a technique for 
invoking behavior (i.e., running a program) on a computer.”

● “The invoking program sends a message to a process (which 
may be an actor or object) and relies on that process and its 
supporting infrastructure to then select and run some 
appropriate code.”

● “Message passing differs from conventional programming where 
a process, subroutine, or function is directly invoked by name.”

https://en.wikipedia.org/wiki/Message_passing
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Synchronous message passing

● When two objects are running at the same time, e.g., in Java or 
Smalltalk

● “Synchronous messaging is analogous to a synchronous 
function call; just as the function caller waits until the function 
completes, the sending process waits until the receiving 
process completes.”

● E.g., Circle, Square, and Rectangle are subclasses of Shape, 
send any Shape a message to calculate its own area
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Isn’t that just object oriented programming with 
polymorphism? 
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Asynchronous message passing
● “With asynchronous message passing the receiving object can be 

down or busy when the requesting object sends the message.”
● “Continuing the function call analogy, it is like a function call that returns 

immediately, without waiting for the called function to complete.”
● Requires storing and retransmitting data
● Buffer gets full?

– Block (can deadlock), --or--
– Drop messages
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Another advantage of message passing is 
multicast and broadcast…
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//scatter rows of first matrix to different processes     
MPI_Scatter(a, N*N/size, MPI_INT, aa, N*N/size, MPI_INT,0,MPI_COMM_WORLD);

//broadcast second matrix to all processes
MPI_Bcast(b, N*N, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

//perform vector multiplication by all processes
for (i = 0; i < N; i++) {
  for (j = 0; j < N; j++) {
    sum = sum + aa[j] * b[j][i];               
  }
  cc[i] = sum;
  sum = 0;
}

MPI_Gather(cc, N*N/size, MPI_INT, c, N*N/size, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);        
MPI_Finalize();

https://stackoverflow.com/questions/41575243/matrix-multiplication-using-mpi-scatter-and-mpi-gather

https://stackoverflow.com/questions/41575243/matrix-multiplication-using-mpi-scatter-and-mpi-gather
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http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02/node8.html

http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02/node8.html
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Another advantage of message passing is 
mobility...
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Can we use semaphores, mutexes, etc. for this?

https://dl.acm.org/doi/pdf/10.1145/151233.151240

https://dl.acm.org/doi/pdf/10.1145/151233.151240
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π calculus
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In operating systems...

● Message passing is an Interprocess Communication 
(IPC) mechanism

● Special semantics and memory protection
● Ordering of events is based on messages

● No need for mutexes, shared memory and semaphores, etc.
● Multicast and broadcast
● Security and reliability benefits?
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A little MacOS history...
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https://en.wikipedia.org/wiki/Altair_8800
(1974)

https://en.wikipedia.org/wiki/Altair_8800
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https://en.wikipedia.org/wiki/Apple_I
(1976)

https://en.wikipedia.org/wiki/Apple_I
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https://en.wikipedia.org/wiki/Apple_II
(1977)

https://en.wikipedia.org/wiki/Apple_II
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https://en.wikipedia.org/wiki/Apple_Lisa
(1983)

https://en.wikipedia.org/wiki/Apple_Lisa
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https://en.wikipedia.org/wiki/NeXTcube
(1990)

https://en.wikipedia.org/wiki/NeXTcube
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https://en.wikipedia.org/wiki/NeXTSTEP

https://en.wikipedia.org/wiki/NeXTSTEP
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Have you heard of any of these?

● Pixar
● Doom
● Quake
● The World Wide Web
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NextSTEP

● Combination of Mach and FreeBSD
● Objective-C
● An object oriented application layer known as “kits”
● The “Dock” in the GUI
● First app store
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https://en.wikipedia.org/wiki/Mach_(kernel)
(1985 to 1994)

● Microkernel replacement for UNIX
● Started as a monolithic kernel and evolved into a 

microkernel
● Basis for…

● GNU Hurd
● XNU

● macOS, iOS, iPadOS, tvOS, and watchOS

https://en.wikipedia.org/wiki/Mach_(kernel)
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UNIX in the 1980s

● Everything is all about pipes
● Networking, device drivers, etc.

● A lot of complexity being added
● Aleph kernel at Univ. of Rochester … OS is modular and 

communicates over pipes
● Added shared memory

● Mach based on message passing
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https://en.wikipedia.org/wiki/Microkernel

https://en.wikipedia.org/wiki/Microkernel
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Supposed benefits of microkernels

● More modular
● A crash in part of the OS doesn’t crash the system?
● Plug and play parts of the OS?

● Makes muiltiple CPUs and distributed computing easier
● Based on message passing

● More secure?
● Filesystem, etc. can be in userspace
● What about transitivity?



  31

Truth about microkernels

● Context switches will always be expensive
● TLB flushes, virtualization

● As far as I can tell, the Mach messaging layer in MacOS 
is there for historical reasons only

● The most impressive things about “message passing” on 
MacOS are object-oriented stuff happening in the GUI 
(AFAIK --- prove me wrong)
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Message passing is still important

● Easy way to do IPC and concurrency
● Advantages over…

● Pipes?
● Stream sockets?
● Datagram sockets?
● Shared memory?

● Beautiful academic theories if you need them
● Mobility

● Supercomputing
● RPC can’t broadcast and muilticast
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