
Message Passing and Microkernels

CSE 536 Spring 2024
jedimaestro@asu.edu

 2

Message passing vs. RPC
● Message passing

– Procedure not directly invoked
by name

– Can be asynchronous, and
typically is

– Multicast and broadcast are
pretty natural to the abstraction

– Models of message passing (like
π calculus) incorporate physics,
are decentralized

● RPC
– Have to specify name of

procedure you’re calling
– Can be non-blocking, i.e.,

asynchronous, but typically is
not

– Not really a way to multicast or
broadcast

– Need a central database of
[type, instance] pairs

 3

Two cautionary notes

● Some people consider RPC to be a specific case of message
passing
– Message passing libraries often offer RPC API built on top of message

passing
● Message passing means a lot of different things to a lot of different

people
– Object oriented people … It’s about modularity
– Distributed computing people … It’s a beautiful model of concurrency
– Microkernel people … It’s about robustness

 4

https://en.wikipedia.org/wiki/Message_passing

● “In computer science, message passing is a technique for
invoking behavior (i.e., running a program) on a computer.”

● “The invoking program sends a message to a process (which
may be an actor or object) and relies on that process and its
supporting infrastructure to then select and run some
appropriate code.”

● “Message passing differs from conventional programming where
a process, subroutine, or function is directly invoked by name.”

https://en.wikipedia.org/wiki/Message_passing

 5

Synchronous message passing

● When two objects are running at the same time, e.g., in Java or
Smalltalk

● “Synchronous messaging is analogous to a synchronous
function call; just as the function caller waits until the function
completes, the sending process waits until the receiving
process completes.”

● E.g., Circle, Square, and Rectangle are subclasses of Shape,
send any Shape a message to calculate its own area

 6

Isn’t that just object oriented programming with
polymorphism?

 7

Asynchronous message passing
● “With asynchronous message passing the receiving object can be

down or busy when the requesting object sends the message.”
● “Continuing the function call analogy, it is like a function call that returns

immediately, without waiting for the called function to complete.”
● Requires storing and retransmitting data
● Buffer gets full?

– Block (can deadlock), --or--
– Drop messages

 8

Another advantage of message passing is
multicast and broadcast…

 9

//scatter rows of first matrix to different processes
MPI_Scatter(a, N*N/size, MPI_INT, aa, N*N/size, MPI_INT,0,MPI_COMM_WORLD);

//broadcast second matrix to all processes
MPI_Bcast(b, N*N, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);

//perform vector multiplication by all processes
for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 sum = sum + aa[j] * b[j][i];
 }
 cc[i] = sum;
 sum = 0;
}

MPI_Gather(cc, N*N/size, MPI_INT, c, N*N/size, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

https://stackoverflow.com/questions/41575243/matrix-multiplication-using-mpi-scatter-and-mpi-gather

https://stackoverflow.com/questions/41575243/matrix-multiplication-using-mpi-scatter-and-mpi-gather

 10

http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02/node8.html

http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02/node8.html

 11

Another advantage of message passing is
mobility...

 12

Can we use semaphores, mutexes, etc. for this?

https://dl.acm.org/doi/pdf/10.1145/151233.151240

https://dl.acm.org/doi/pdf/10.1145/151233.151240

 13

π calculus

 14

 15

In operating systems...

● Message passing is an Interprocess Communication
(IPC) mechanism

● Special semantics and memory protection
● Ordering of events is based on messages

● No need for mutexes, shared memory and semaphores, etc.
● Multicast and broadcast
● Security and reliability benefits?

 16

A little MacOS history...

 17

https://en.wikipedia.org/wiki/Altair_8800
(1974)

https://en.wikipedia.org/wiki/Altair_8800

 18

https://en.wikipedia.org/wiki/Apple_I
(1976)

https://en.wikipedia.org/wiki/Apple_I

 19

https://en.wikipedia.org/wiki/Apple_II
(1977)

https://en.wikipedia.org/wiki/Apple_II

 20

https://en.wikipedia.org/wiki/Apple_Lisa
(1983)

https://en.wikipedia.org/wiki/Apple_Lisa

 21

 22

https://en.wikipedia.org/wiki/NeXTcube
(1990)

https://en.wikipedia.org/wiki/NeXTcube

 23

https://en.wikipedia.org/wiki/NeXTSTEP

https://en.wikipedia.org/wiki/NeXTSTEP

 24

Have you heard of any of these?

● Pixar
● Doom
● Quake
● The World Wide Web

 25

 26

NextSTEP

● Combination of Mach and FreeBSD
● Objective-C
● An object oriented application layer known as “kits”
● The “Dock” in the GUI
● First app store

 27

https://en.wikipedia.org/wiki/Mach_(kernel)
(1985 to 1994)

● Microkernel replacement for UNIX
● Started as a monolithic kernel and evolved into a

microkernel
● Basis for…

● GNU Hurd
● XNU

● macOS, iOS, iPadOS, tvOS, and watchOS

https://en.wikipedia.org/wiki/Mach_(kernel)

 28

UNIX in the 1980s

● Everything is all about pipes
● Networking, device drivers, etc.

● A lot of complexity being added
● Aleph kernel at Univ. of Rochester … OS is modular and

communicates over pipes
● Added shared memory

● Mach based on message passing

 29

https://en.wikipedia.org/wiki/Microkernel

https://en.wikipedia.org/wiki/Microkernel

 30

Supposed benefits of microkernels

● More modular
● A crash in part of the OS doesn’t crash the system?
● Plug and play parts of the OS?

● Makes muiltiple CPUs and distributed computing easier
● Based on message passing

● More secure?
● Filesystem, etc. can be in userspace
● What about transitivity?

 31

Truth about microkernels

● Context switches will always be expensive
● TLB flushes, virtualization

● As far as I can tell, the Mach messaging layer in MacOS
is there for historical reasons only

● The most impressive things about “message passing” on
MacOS are object-oriented stuff happening in the GUI
(AFAIK --- prove me wrong)

 32

Message passing is still important

● Easy way to do IPC and concurrency
● Advantages over…

● Pipes?
● Stream sockets?
● Datagram sockets?
● Shared memory?

● Beautiful academic theories if you need them
● Mobility

● Supercomputing
● RPC can’t broadcast and muilticast

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

