File systems

CSE 536 2026
jedimaestro@asu.edu

task struct* current — dent ry —F inode
[files->fdt->fd) d flags | [i uid
d parent i gid
d name 1 5128
£t » file d inode — i._ino
fd=1 f inode | , 1—5b, o]
i] T 1 mapping
fd=3 dentry
B mnt — vfsmount
f flags | mnt sb | ———— supe r_block+
f mode | mnt_root | s dev
fd=255 | F =
s s blocksize
f_mapping — s _root
dentry «—— s_id
d_flagﬁ 5_UU1C|
d_parent s_bdev
A nane s fs info
d inode

https://myaut.github.io/dtrace-stap-book/kernel/fs.html

man lsof
man stat
man dd
man df
man losteup
man 1lsblk
man mkfs.ext4
man mount
man rm
man strings

User Space

Cache
Hit

Kernel Space

Miss

Inode & Dentry Cache Data Cache

e T e N Data
Fetch - Cache
Fetch

https://msreekan.com/tag/block-device/

https://msreekan.com/tag/block-device/

Digital forensics

According to Wikipedia, you could be looking for: attribution, alibis and
statements, intent, evaluation of source, document authentication

File carving (e.g., bifragment gap carving)
— Electron microscopes
Memory forensics (Volatility)

Network forensics (PCAPs, NetFlow records, NIDS logs)
Database forensics

Timestamps in document or log file analysis
Steganography

Digital forensic processes

Benford's law

Forensics tools

File carvers

- E.g., Scalpel and foremost

Log parsers

Parsers/viewers for different kinds of files
- SQLite, EXIF, etc.

Linux commands that might be useful:

- file, exif, sqglite3, losetup, mount, dd, ssdeep, grep,
strings

File carving

Alessio Sbarbaro User_talk:Yoggysot - Own work

Memory forensics

$ python vol.py --profile=LinuxDebian-3 2x64 -f debian.lime linux netstat

Proto Source IP:Port Destination IP:Port State Process

TCP 192.168.174.169:22 192.168.174.1:56705 ESTABLISHED sshd/2787
TCP 0.0.0.0:22 0.0.0.0:0 LISTEN sshd/2437
UDP 0.0.0.0:137 0.0.0.0:0 LISTEN nmbd/2121

[snip]

man netstat

Some slides borrowed from...

https://students.mimuw.edu.pl/ZSO/Wyklady/06_memory2/BuddySlabAllocator.pdf
https://students.mimuw.edu.pl/ZSO/Wyklady/06_memory2/BuddySlabAllocator.pdf

S S —- —- —r
- - -} -
_..--—-._1-_-_'__
Bash Physical
Memory
w r'“--._____-_..‘_
Siab ABocator roned
e buddy
- allocator
Kernal
Standard Subsystems i
kswapd
C Library VFs -
httpd
(ghibc) Wetwor
Syscalls
-
-
bdfhush
B B
mazilka -} -
-y
Disk Driver Dislk
Used Space
Processes VM Subsystem

High overview of Virtual Memory subsystem
(source: N. Murray, N. Horman, Understanding Virtual Memory)

Buddy heap vs. slab allocator

* Buddy heap
- For grabbing 4KB pages at a time, contiguous
 Slab allocator

- For grabbing 4KB pages at a time for common data
structures

extern struct kmem_cache *vm_area_ cachep;
extern struct kmem_cache *mm_cachep;
extern struct kmem_cache *files_cachep;
extern struct kmem_cache *fs_cachep;
extern struct kmem_cache *sighand_cachep;

Memory (object) H‘,

allocation

Slab allocator components

global list_head

—

slab Page #N

Slab Cache
(page order =0)

slab object

slab object

slab object

slab object

slab object

slab object

slab object

slab object

slab Page #0

slab object

slab object

slab object

slab object

Slab Allocator
..--"""' L]

i

Page #N

Slab Cache

slab object

slab object

slab object

slab object

(page order = 1)
Page #1

slab object

slab object

slab
Page #0

* object = data structure

slab object

slab object

(source: Adrian Huang, Slab Allocator in Linux Kernel, 2022)

I

J

4 objects
per page

2 objects
per page

glibc: malloc/free

brk/mmap User Space

Kernel Space

kmem_cache_alloc/kmem_cache_free
kmalloc/kfree

vmalloc l

J Slab Allocator

Buddy System
alloc_pagel(s), __get free_page(s)

Hardware

(source: Adrian Huang, Slab Allocator in Linux Kernel, 2022)

So we could indeed make the inodes as large as the blocks, but in a real system this is probably
not the case. In case you're wondering, the inode structure talks only about the pointers to the

data blocks. So we have 156 bytes of pointers to the actual file contents, but the whole inode
takes up 256 bytes - basically, we have 100 bytes we can use at our leisure, for whatever
metadata we desire.

https://unix.stackexchange.com/questions/385323/is-the-size-of-inodes-fixed

Treasure and tragedy in kmem_cache mining for live

forensics investigation

Andrew Case?, Lodovico Marziale®, Cris Neckar®, Golden G. Richard, I1I*

*Digital Forensics Solutions, LLC, United States
" Neohapsis Inc., United States

“Dept. of Computer Science, University of New Orleans, Lakefront Campus, New Orleans, LA 70148, United States

debian:~/slabwalk# insmcd ./slabwalk. ko
debian: ~/slabwalk# head -5 Jvar/log/messages

kernel: [35566._045181] inode: 108310 0 O
kernel: [35566_059469] inode: 106312 0 O
kernel: [35566_071471] inode: 1389091 0 O
kernel: [35566.082007] inode: 108308 0 O

debian:~/slabwalk$ ffind /dev/edal 106310
Jusr/ahare/zoneinfo/posix/America /Fortaleza,/tmp
SooeZl.oAC. o

debian: ~/slabwalk# £find /dev/sdal 139091
Svar/run/sshd

debian: ~/slabwalk# £find /dev/sdal 106308
Jusryseshare/zoneinfo/posix/America/Fortaleza/tmp
foceoInIs. o

Fig. 4 — Traversing the ext3 inode cache and using the
Sleuthkit to obtain filenames.

been deleted since they were last used. Unfortunately, the
normal algorithm for gathering the names of opened files,
walking the list of the inode's directory entries, is not usable
since the list is cleared on deallocation. Recovery of the names
can still be achieved though with the help of the Sleuthkit,
howewver, since the inode number is still accurate in the struc-
ture. Fig. 4 shows the results of traversing the free inode cache
and then passing the inode number of free objects to ffind of the
Sleuthkit, to perform a "dead” analysis of the inode in a fil-
esystem image.

When testing this module, the ext3 filesystern was used
and its inode cache, ext3_inode_cachep, was traversed. This
cache actually contains ext3_inode_info structures, and these
structures embed a regular inode structure. The inode struc-
ture allows the module to gather an inode’s owner, group,
made, and inode number. Investigators can use this infor-
mation to discover recently opened files, the permissions the
file was opened with, and which user opened the file.

4.5. Socket buffers

4.6, Bound sockets

Before network servers can start accepting connections, they
must bind() to a network port. In order to facilitate fast lookups
of open and in-use ports, the Linux kernel tracks each in-use
port within a quickly searchable data structure. For the TCP
protocol, each port is kept within the bind_bucket_cachep of the
tep_hashinfo structure. This cache holds inet bind_bucket
structures whose member port contains the listening network
port. This structure also contains a list of sock structures that
reference the port, but unfortunately this list is cleared on
deallocation. Enumeration of inactive entries of this cache will
reveal ports that were previously used to accept network
connections. In investigations where network capable mal-
ware was either present on the system or suspected to be
present, this cache may be useful to help prove or disprove its
existence. The port numbers can also be used to quickly point
an investigator to interesting data within a netweork capture.
Finally, combined with the network caches presented in the
rest of this section, an investigator can gather a large amount
of information related to past network activity solely from the
machine under investigation. This will save investigative time
normally spent examining server, [DS, and router logs.

47. Netfilter NAT table

The last cache explored, nf_conntrack_cachep, stores the Net-
filter connection tracking information in nf_conn structures.
Netfilter (netfilter.org) is the underlying framework for packet
filtering in the Linux kernel, and the popular firewall tech-
nology, [FTables, is built upon it. In order to provide NAT
capahilities, the connection tracking module must store the
source and destination IP address and port for each translated
connection. In the current Linux implementation, the
incoming and outgeing translation for each connection is
stored within the tuplehash member of each nf_conn structure.

Think about this while reading the reading
assignment...

Suppose a process (Pegasus malware, VPN, Tor, etc.) wants
to keep network activity from being logged to the hard drive.
How hard is it to guarantee that?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

