
Scheduling, wait queues

CSE 536 Spring 2026
jedimaestro@asu.edu

 2

Don’t panic because of my teaching philosophy. Systems is a combination of very
abstract and very concrete ideas. Like my Chinese teacher told me, you just

have to jump into it and then get used to it...

 3

Outline

● Let’s look at processes some more
– Signals

● Terminology of scheduling
– Wait states

● Textbook scheduling algorithms
● Actual scheduling algorithms
● Input/Output (I/O)

 4

 5

 6

Process Control Block

● State
● Saved registers
● Address space
● File descriptor table
● Signal information
● Much more…

 7

https://www.baeldung.com/linux/pcb
/* Simplified representation of the task_struct structure in Linux kernel */

struct task_struct {
 volatile long state; // Process state (e.g., TASK_RUNNING,
TASK_STOPPED)
 struct thread_info *thread_info;
 struct exec_domain *exec_domain; // Execution domain information
(deprecated)
 struct mm_struct *mm; // Memory management information (address
space)
 struct fs_struct *fs; // Filesystem information
 struct files_struct *files; // File descriptor table
 struct signal_struct *signal; // Signal handlers and signals pending
 struct sighand_struct *sighand; // Signal handling information
 ...
 /* Various other fields */
 ...
};

https://www.baeldung.com/linux/pcb

 8

https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

 9

● TASK_INTERRUPTIBLE … Can be woken up by a signal.
● TASK_UNINTERRUPTIBLE … Can’t be woken up by a signal,
e.g., is waiting for some special event
– Probably a kernel thread

 10

fork() and exec()

int pid = fork()

if (pid == 0) {

 exec(“/bin/ls”);

} else {

 waitpid(pid, &status, options);

}

 11

man fork
man clone3

 12

Illusions

● Create the illusion each process has its own CPU
– Context switch

● Create the illusion each process has its own memory
– Virtual memory

● Physical memory is divided into different virtual memory spaces
● We’ll discuss this more later in the semester

● Create the illusion each OS has its own physical memory and CPU
– Virtualization

 13

Context switches

● Reasons a CPU stops executing a process and starts executing
code inside the kernel (e.g., interrupt handler or scheduler)
– Exceptions, e.g. …

● Divide by zero
● System call (could also be placed under yield)

– Interrupts, e.g. …
● I/O event

– Yield
● I/O request or placed on some wait queue

 14

Simple schedulers

● FIFO, a.k.a., FCFS (First In First Out, or First Come First Serve)
– 1111111111222333333

● Turnaround time
– How long a process takes to complete
– Assume all processes are ready in sequence 1, 2, 3 at the beginning

● Average turnaround time = average(10, 13, 19) = 14

 15

Simple schedulers (continued...)

● Shortest Job First
– 2223333331111111111
– Turnaround time improved

● Average(3, 9, 19) = 10.333... (less than 14)

 16

So, why not use Shortest Job First?

 17

Reason #1

● We can’t see into the future

 18

Reason #2

● Without preemption, it’s hard to get a good response time
– Response time: How long it takes the CPU to respond to a request

made by a process
● E.g., you press a key, you’d like to see that letter on the screen

 19

Add a timer interrupt...

● …that, e.g., goes off every 10ms or 1ms
● Gives the scheduler a chance to schedule a new process, e.g.,

if there’s been some input and they’re out of the wait queue
● Round Robin scheduler

– Divide CPU time into slices
– E.g., each process gets two time slices

● 1122331123311331111

 20

Can do even better...

● If we could see into the future?
– Could improve response time by prioritizing (i.e., letting them skip in

line) processes that are very likely to yield the CPU quickly
● Can predict future behavior based on past behavior

 21

Multilevel Feedback Queue

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

 22

MLFQ

● Fernando Corbato’s Turing award is based on this
● Famously used in Solaris
● Modern schedulers are not always MLFQ’s but are based on

the same ideas
● Priorities can also have a static element to them, in general

– man nice
● What about starvation?

 23

Linux Completely Fair Scheduler

https://svalaks.medium.com/linux-internals-completely-fair-scheduling-cfs-cpu-scheduler-algorithm-7412c08d2e37

https://svalaks.medium.com/linux-internals-completely-fair-scheduling-cfs-cpu-scheduler-algorithm-7412c08d2e37

 24

Linux CFS

● Picks process from left-most node in O(1) time
● Reinserts when a process is done in O(log(N)) time
● The more you yield the CPU, the more you stay to the left
● The more CPU you hog, the more you move to the right
● Priority is also part of the slice calculation
● Good tradeoff of throughput and responsiveness, no starvation

 25

 26

 27

 28

 29

 30

Demo

● Parent on bottom never changes
– In a wait state

● CPU intensive (37445) stays pretty high all the time
● Memory intensive (37447) jumps back and forth
● I/O intensive (37446) usually the lowest

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

