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Don’t panic because of my teaching philosophy.  Systems is a combination of very 
abstract and very concrete ideas.  Like my Chinese teacher told me, you just 

have to jump into it and then get used to it...
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Outline

● Let’s look at processes some more
– Signals

● Terminology of scheduling
– Wait states

● Textbook scheduling algorithms
● Actual scheduling algorithms
● Input/Output (I/O)
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Process Control Block

● State
● Saved registers
● Address space
● File descriptor table
● Signal information
● Much more…



  7

https://www.baeldung.com/linux/pcb
/* Simplified representation of the task_struct structure in Linux kernel */

struct task_struct {
    volatile long state;            // Process state (e.g., TASK_RUNNING, 
TASK_STOPPED)
    struct thread_info *thread_info;
    struct exec_domain *exec_domain; // Execution domain information 
(deprecated)
    struct mm_struct *mm;           // Memory management information (address 
space)
    struct fs_struct *fs;           // Filesystem information
    struct files_struct *files;     // File descriptor table
    struct signal_struct *signal;   // Signal handlers and signals pending
    struct sighand_struct *sighand; // Signal handling information
    ...
    /* Various other fields */
    ...
};

https://www.baeldung.com/linux/pcb
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https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html
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● TASK_INTERRUPTIBLE … Can be woken up by a signal.
● TASK_UNINTERRUPTIBLE … Can’t be woken up by a signal, 
e.g., is waiting for some special event
– Probably a kernel thread
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fork() and exec()

int pid = fork()

if (pid == 0) {

    exec(“/bin/ls”);

} else {

    waitpid(pid, &status, options);

}
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man fork
man clone3
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Illusions

● Create the illusion each process has its own CPU
– Context switch

● Create the illusion each process has its own memory
– Virtual memory

● Physical memory is divided into different virtual memory spaces
● We’ll discuss this more later in the semester

● Create the illusion each OS has its own physical memory and CPU
– Virtualization
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Context switches

● Reasons a CPU stops executing a process and starts executing 
code inside the kernel (e.g., interrupt handler or scheduler)
– Exceptions, e.g. … 

● Divide by zero
● System call (could also be placed under yield)

– Interrupts, e.g. …
● I/O event

– Yield
● I/O request or placed on some wait queue
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Simple schedulers

● FIFO, a.k.a., FCFS (First In First Out, or First Come First Serve)
– 1111111111222333333

● Turnaround time
– How long a process takes to complete
– Assume all processes are ready in sequence 1, 2, 3 at the beginning

● Average turnaround time = average(10, 13, 19) = 14 
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Simple schedulers (continued...)

● Shortest Job First
– 2223333331111111111
– Turnaround time improved

● Average(3, 9, 19) = 10.333... (less than 14)
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So, why not use Shortest Job First?
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Reason #1

● We can’t see into the future
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Reason #2

● Without preemption, it’s hard to get a good response time
– Response time: How long it takes the CPU to respond to a request 

made by a process
● E.g., you press a key, you’d like to see that letter on the screen
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Add a timer interrupt...

● …that, e.g., goes off every 10ms or 1ms
● Gives the scheduler a chance to schedule a new process, e.g., 

if there’s been some input and they’re out of the wait queue
● Round Robin scheduler

– Divide CPU time into slices
– E.g., each process gets two time slices

● 1122331123311331111
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Can do even better...

● If we could see into the future?
– Could improve response time by prioritizing (i.e., letting them skip in 

line) processes that are very likely to yield the CPU quickly
● Can predict future behavior based on past behavior
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Multilevel Feedback Queue

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
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MLFQ

● Fernando Corbato’s Turing award is based on this
● Famously used in Solaris
● Modern schedulers are not always MLFQ’s but are based on 

the same ideas
● Priorities can also have a static element to them, in general

– man nice
● What about starvation?
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Linux Completely Fair Scheduler

https://svalaks.medium.com/linux-internals-completely-fair-scheduling-cfs-cpu-scheduler-algorithm-7412c08d2e37

https://svalaks.medium.com/linux-internals-completely-fair-scheduling-cfs-cpu-scheduler-algorithm-7412c08d2e37
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Linux CFS

● Picks process from left-most node in O(1) time
● Reinserts when a process is done in O(log(N)) time
● The more you yield the CPU, the more you stay to the left
● The more CPU you hog, the more you move to the right
● Priority is also part of the slice calculation
● Good tradeoff of throughput and responsiveness, no starvation
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Demo

● Parent on bottom never changes
– In a wait state

● CPU intensive (37445) stays pretty high all the time
● Memory intensive (37447) jumps back and forth
● I/O intensive (37446) usually the lowest
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