Scheduling, wait queues

CSE 536 Spring 2026
jedimaestro@asu.edu

]
- l'l"-_- '

el -

Don’t panic because of my teaching philosophy. Systems is a combination of very
abstract and very concrete ideas. Like my Chinese teacher told me, you just
have to jump into it and then get used to it...

Outline

Let’s look at processes some more
- Signals

Terminology of scheduling

- Wait states

Textbook scheduling algorithms
Actual scheduling algorithms

Input/Output (1/0O)

+1 jedi@tortuga: ~

top - 12:51:12 up 1:29, 1 user, load average: 0.26, 0.45, 0.49

Tasks: 409 total, 1 running, 408 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.2 us, 1.0 sy, 0.8 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st
MiB Mem : 31325.8 total, 23442.7 free, 4061.8 used, 3821.3 buff/cache

MiB Swap: 16384.0 total, 16384.0 free, 0.0 used. 24873.1 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2533 jedi 26 6 33.0g 236792 144920 S :25.65 chrome
3365 jedi 26 6 1131.6g 206860 109988 S :10.76 chrome
1888 jedi 17 -3 1192648 156480 106268 S :01.15 Xorg
2047 jedi 17 -3 6446180 323800 141236 S :39.57 gnome-s+
5906 jedi 29 9 561628 53576 40680 S :03.44 gnome-t+
2489 jedi 26 33.3g 678800 535080 S :57.98 chrome
3303 jedi 26 1133.8g 356132 138440 S :10.51 chrome
1130 root 32 332160 13440 12288 S :11.66 touchegg
2534 jedi 26 32.4g 126668 97908 S :10.39 chrome

S
S
S
I
I
I
I
I

()]
O
(o]

=

OO OO0 000 OPRFRPR OO0 WO WWwWMNN

1 root 20 166572 11136 8160 :01.38 systemd
:00.01 kthreadd
:00.00 pool_wo+
:00.00 kworker+
:00.00 kworker+
:00.00 kworker+
:00.00 kworker+
:00.00 kworker+

root 20 0] 0] (0]
root 20
root 0]

root
root
root

oo ooNoNololNolNolN ol i ol 08 R VS IR S g 8) |
o oNoNoNoNoNoNoREBNNoNONOoNONe o]
oo ooNoNololNolNolN ol il 0SB < I o]
oo oNoNoNoNoNoRN- o RN I i NS RN < RN 8 B e) N

2
3
A
5 root
6
7
2

0
)
)
1)

jedi@tortuga: ~

:~$ ps -eo args,pid,wchan | grep pipe_read
cat 2494
cat 2495
/usr/lib/libreoffice/progra 6161
grep --color=auto 6652

:~$ []

Process Control Block

State

Saved registers
Address space

File descriptor table
Signal information
Much more...

/* Simplified representation of the task_struct structure in Linux kernel */

struct task_struct {

volatile long state; // Process state (e.g., TASK_RUNNING,
TASK_STOPPED)

struct thread info *thread info;

struct exec_domain *exec_domain; // Execution domain information
(deprecated)

struct mm_struct *mm; // Memory management information (address
space)

struct fs_struct *fs; // Filesystem information

struct files_struct *files; // File descriptor table

struct signal_struct *signal; // Signal handlers and signals pending

struct sighand_struct *sighand; // Signal handling information

/* Various other fields */

https://www.baeldung.com/linux/pcb

clone()

preemption

v

TASK_READY

schedule()

A

signal

exit()

TASK_RUNNING

wake _up()

wake _up()

wait_event()

TASK_INTERRUPTIBLE

wait_event()

TASK_UNINTERRUPTIBLE

TASK_DEAD
TASK_ZOMBIE

https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

* TASK INTERRUPTIBLE ... Can be woken up by a signal.

* TASK_UNINTERRUPTIBLE ... Can’t be woken up by a signal,
e.g., Is waiting for some special event

- Probably a kernel thread

fork() and exec()

int pid = fork()

if (pid == 0) {
exec(“/bin/1s”);

} else {
waltpid(pid, &status,

options);

10

man fork
man clone3

11

lllusions

* Create the illusion each process has its own CPU
— Context switch
* Create the illusion each process has its own memory

- Virtual memory

* Physical memory is divided into different virtual memory spaces
 We’'ll discuss this more later in the semester

* Create the illusion each OS has its own physical memory and CPU
- Virtualization

12

Context switches

 Reasons a CPU stops executing a process and starts executing
code inside the kernel (e.g., interrupt handler or scheduler)

- EXceptions, e.g. ...

e Divide by zero

« System call (could also be placed under yield)
- Interrupts, e.g. ...

* 1/O event
- Yield

* |/O request or placed on some wait queue

13

Simple schedulers

* FIFO, a.k.a., FCFS (First In First Out, or First Come First Serve)
- 1111111111222333333

e Turnaround time

- How long a process takes to complete

- Assume all processes are ready in sequence 1, 2, 3 at the beginning
e Average turnaround time = average(10, 13, 19) = 14

14

Simple schedulers (continued...)

e Shortest Job First
- 2223333331111111111

— Turnaround time improved
e Average(3, 9, 19) = 10.333... (less than 14)

15

So, why not use Shortest Job First?

16

Reason #1

e We can't see into the future

17

Reason #2

* Without preemption, it’s hard to get a good response time

- Response time: How long it takes the CPU to respond to a request
made by a process

 E.g., you press a key, you'd like to see that letter on the screen

18

Add a timer interrupt...

* ...that, e.g., goes off every 10ms or 1ms

* Gives the scheduler a chance to schedule a new process, e.g.,
If there’s been some input and they’re out of the wait queue

e Round Robin scheduler
— Divide CPU time into slices

- E.g., each process gets two time slices
e 1122331123311331111

19

Can do even better...

e |f we could see into the future?

— Could improve response time by prioritizing (i.e., letting them skip in
line) processes that are very likely to yield the CPU quickly

* Can predict future behavior based on past behavior

20

Multilevel Feedback Queue

Figure 8.1: MLFQ Example

21

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

MLFQ

Fernando Corbato’s Turing award is based on this
Famously used in Solaris

Modern schedulers are not always MLFQ’s but are based on
the same ideas

Priorities can also have a static element to them, in general

- man nice

What about starvation?

22

Linux Completely Fair Scheduler

Modes represent
sched_entity(s)
indexed by their
wirtual runtime

[NIL] [FIL]

[NIL] O

[N [NiL] [NIL]

virtual runtime

) Most need of CPLU Least nead of CPLU

https://svalaks.medium.com/linux-internals-completely-fair-scheduling-cfs-cpu-scheduler-algorithm-7412c08d2e37

Linux CFS

Picks process from left-most node in O(1) time

Reinserts when a process is done in O(log(N)) time

The more you yield the CPU, the more you stay to the left

The more CPU you hog, the more you move to the right
Priority is also part of the slice calculation

Good tradeoff of throughput and responsiveness, no starvation

24

jedi@tortuga: / proc/24050 o}

$ cat sched.sh

#!/bin/bash

pidof stress | sort -n | sed "s/ /\n/g" | while read p; do

cat /proc/$p/sched | grep vruntime
done

$ watch ./sched.sh [

jedi@tortuga: / proc/24050

:~$ stress -c 1 -i 1 -m 1
stress: info: [37444] dispatching hogs: 1 cpu, 1 io, 1 vm, 0 hdd

|

+1 jedi@tortuga: / proc/24050 o = - @

top - 13:31:51 up 1 day, 4:41, 4 users, load average: 1.47, 2.42, 3.21
Tasks: 440 total, 3 running, 437 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 7.1 sy, 6.9 ni, 79.7 id, 5.1 wa, 0.0 hi, 1.2 si, 0.0 st
MiB Mem : 31325.8 total, 17321.6 free, 8486.6 used, 5517.6 buff/cache

MiB Swap: 16384.0 total, 16384.0 free, 0.0 used. 20265.0 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
37445 jedi 26 6 3708 256 256 R 100.0 0:25.26 stress
37447 jedi 26 6 265856 97968 128 R 100.0 stress
37446 jedi 26 6 3708 128 128 D 19.5 . :04.92 stress
21808 jedi 26 6 1131.6g 211904 110448 S :40.38 chrome

2909 jedi 26 6 33.1g 318192 184720 S :07.17 chrome
9297 jedi 26 6 6149668 2.8¢g 2.7¢ S :36.08 Virtual+
15154 root 0 -20 0 0 0 I :01.95 kworker+
37260 root 0 -20 0 0 0 I :00.13 kworker+
1912 jedi -50 143312 37800 8708 S :41.08 pipewir+

2863 jedi 26 6 33.3g 751168 559040 S :10.10 chrome

S
S
I
I
I
S
S

N

2910 jedi 26 6 32.5g 153956 106444 :37.57 chrome
21791 jedi 26 6 1133.7g 345616 130920 :03.42 chrome
29778 root -20 0 0 0 :02.21 kworker+
32688 root -20 :01.41 kworker+
37450 root -20 :00.18 kworker+

281 root 0] :05.79 irq/86-+

1223 root 0 :32.14 napi/ph+

[l oo oo o R oo R B I I S
W wd NN NNNNOO WSO

ool oNoR NN o]

) 0
) 0]
) 0]
0 0

a

Every 2.0s:

37447
se.vruntime
37446
se.vruntime
37445
se.vruntime
37444
se.vruntime

./sched.sh

jedi@tortuga: / proc/24050 ay i= - @

tortuga: Fri Jan 26 13:34:03 2024

2164454.807419

2740210.094238

4762379.104371

4014571.764231

a

Every 2.0s:

37447
se.vruntime
37446
se.vruntime
37445
se.vruntime
37444
se.vruntime

./sched.sh

jedi@tortuga: / proc/24050 ey = - @

tortuga: Fri Jan 26 13:34:51 2024

3517317.756064

3546412.653729

3259799395897

4014571.764231

Demo

Parent on bottom never changes

- In a wait state
CPU intensive (37445) stays pretty high all the time

Memory intensive (37447) jumps back and forth
/O intensive (37446) usually the lowest

30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

