Virtual Memory, Rowhammer, and Meltdown

CSE 536 Spring 2026
jedimaestro@asu.edu

Virtual memory...

Page Table for A gy

Running Valid El{]}fsmal T
¥ | : emory
Process A Frame# Bit Frame Process A
0 4 1 Number page 0
1 - 0 0 | page 6 of B _ page 1
CPU 2 5 1 1 | page 3 of A PIGCESSGB page 2
3 1 1 2 | page Sof A page page 3
4 - 0 3 | page 5of B page ,l} page 4
3) 1 4 | pageOof A ik page 5
: i & page 3 2
6 - \ 0 5 | page 20f A = page 6
6 | page 4 of B Dot 4
= page 5
page# oOffset ame# offset page 6
5 50 2 50 w
Logical Addr. Physical Addr.

Plagiarized from http://www.cs.uni.edu/~fienup/cs142f05/lectures/lec20_OS_virtual_memory.HTM

:~$ head -n 16 /proc/ echo $$ /maps | sed "s/
:01
101
:01
:01
:01
00:
00:
:01
:01

5eb8e1d110@0 5eb8e1d40000
5eb8e1d40000-5eb8el1lel1f000
5eb8el1el1f000-5eb8e1e59000
5eb8e1e5a000-5eb8e1e5e000
5eb8e1e5e000-5eb8ele67000
5eb8eleb67000-5ebB8e1e72000
5eb8e2c62000-5eb8e2e09000
739311400000-739312306000
739312400000-739312428000

739312428000~
7393125bd000-
739312615000~
739312616000~
739312612000~
73931261c000-
7393127fcO00-

7393125bd000
739312615000
739312616000
73931261a000
73931261c000
739312629000
739312711000

r--p
r-Xxp
r--p
r--p
rw-p
rw-p
rw-p
r--p
r--p
r-Xxp
r--p
P
r--p
rw-p
rw-p

00000000
00021000
0010e000
00148000
0014c000
00000000
00000000
00000000
00000000
00028000
001bd000
00215000
00215000
00219000
00000000
00000000

fc
fc
fc
fc
fc

fc
fc
fc
fc
fc
fc
fc

00
00

:01
:01
101
:01
:01
00:
00:

00
00

72220755
72220755
72220755
72220755
72220755
0

¢)

72221250
72286240
72286240
712286240
72286240
72286240
72286240
0

)

/ /g"
/usr/bin/bash
/usr/bin/bash
/usr/bin/bash
/usr/bin/bash
/usr/bin/bash

[heap]
/usr/lib/locale/locale-archive
/usr/1ib/x86_64-1inux-gnu/libc.
/usr/1ib/x86_64-1inux-gnu/libc.
/usr/1ib/x86_64-1linux-gnu/libc.
/usr/1ib/x86_64-1inux-gnu/libc.
/usr/1ib/x86_64-1inux-gnu/libc.
/usr/1ib/x86_64-1inux-gnu/libc.

:~$ tail -n 16 /proc/ echo $$ /maps | sed "s/ / /g"
7393127ff000 73931280d000 r--p 00000000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931280d000-73931281e000 r-xp 0000e000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931281e000-73931282¢c000 r--p 0001000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931282c000-739312830000 r--p 0002c000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
739312830000-739312831000 rw-p 00030000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
739312842000-739312849000 r--s 00000000 :01 72286510 /usr/1ib/x86_64-1inux-gnu/gconv/gconv
739312849000-73931284b000 rw-p 00000000 :00 O
73931284b000-73931284d000 r--p 00000000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-1linux-x8!
73931284d000-739312877000 r-xp 00002000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-1linux-x8t
739312877000-739312882000 r--p 0002c000 101 72286234 /usr/1ib/x86_64-1inux-gnu/1ld-1linux-x8!
739312883000-739312885000 r--p 00037000 101 72286234 /usr/1ib/x86_64-1inux-gnu/1ld-1linux-x8t
739312885000-739312887000 rw-p 00039000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-Tlinux-x8¢
7ffe8c20a000-7ffe8c22b000 rw-p 0OOOOOOO 0O:00 O [stack]
7ffe8c335000-7ffe8c339000 r--p 00000000 :00 [vvar]
7ffe8c339000-7ffe8c33b00OO r-xp 00OOO00O0 :00 0 [vdso]
ffffffffff600000-ffffffffff601000 --xp OOOOOOOO 0O:00 0O [vsyscall]

Abstractions

* Process hierarchy
* Filesystem and filesystem hierarchy
* Virtual address spaces

Reality

* Files are spread all over disk and the memory,
namespace Is shared by many processes

* Virtual address spaces are spread all over the
disk and memory, physical pages are shared by
multiple processes

e Processes are an abstraction of an architectural
state, but the CPU is physically implemented as
a microarchitecture

Linux page cache

 Demand paging

— Only bring blocks into memory, or allocate physical pages, when
they are used

* Copy-on-write
* Zero page
— rwx permissions are hardware enforced

— Pages can be dirty or clean

 Dirty pages should eventually be written back to disk
— Easier to evict clean pages

* Page replacement algorithm
- E.g., Least Recently Used or LRU

FGO

FMD

FTE

https://lwn.net/Articles/106177/

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
Page-M . ! :
. LE#Z?—Ed G?f:ﬂl Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend Pointer Offset Offset Offset Page Offset
(PML4
A9 A2 A9 A9 A2
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
= pre | £
52
£ —= PDPE :
™ PMLAE 5o | igzs'm'
(o rass
- o - i
*Thiz is an architectural imit. A given procassor
54 iz implemantation may support fewer bits.

Page-Map Level-3
Basae Addrasse

CR3

https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems

Page Table Entry

Bits 31-12 of address

P: Present

R'W: Eead/Write
U'S: User/Supearvisor
PWT: Write-Through
PCD: Cache Disabla
A: Accessed

D: Dirty

G: Global

AVL: Available
PAT: Page Attribute
Table

https://wiki.osdev.org/File:Page_table_entry.png

Page faults

* Trap to the kernel whenever there is any issue
with translating a page or accessing the
memory

- Kernel diagnoses what the problem is

* Fix the problem and let the process continue?
* Or, send SIGSEGV

* There’s a special cache for page table entries
called a translation lookaside buffer (TLB)

Rowhammer...

Food for thought

Information Is inherently physical

Information only has meaning in that it is
subject to interpretation

Management information stored in-band with
regular information

Programming the weird machine

il \]\\

CAS

Plagiarized from:
https://en.wikipedia.org/wiki/Row_hammer#/media/File:Row_hammer.svg

Step #1: Find aggressor and victim

* Allocate a large chunk of memory, like 1GB or more

* Aggressors X and Y must be different rows in the same bank
- DRAM row is typically >4K and <2MB
- Rows in a bank activated in lockstep

* Pick X and Y as random virtual addresses
— Check if hammering X and Y flips a bit in Z
- If you find that Z (have to check the whole block), that’s your victim

* Hope that you can flip, e.g., the 12" bit in a 64-bit word rather
than, e.qg., the 51+

« munmap() all but these three pages (two aggressors, one victim)

Step #2: Randomize physical
memory

* Why? So a small change in where a PTE
points will not go from one data page to
another.

* Allocate a huge chunk of memory with mmap()
with MAP_POPULATE

* Throughout the exploit, release a random 4KB
at a time with madvise + MADV_DONTNEED

Step #3: Spray physical memory
with page tables

 Keep mmap()ing a file with markers in it, 2ZMB
aligned

- Why 2MB? One page table has 512 entries times
4K = 2MB
- Try to have more page tables in memory than data

* When victim is released it's likely to be a page table

* When bit is flipped new value is likely to point to a page
table

Step #4: Hammer time

* Check if bit flip changed a mapping in the page
table to point to another page table

- Only have to check the Nth page within each 2MB
chunk

 If it's not pointing to the file, then it's likely
pointing to another page table. Which one?
- Can change it arbitrarily, then scan our virtual

address space to fine another page that now
doesn’t point to the file

Step #5: Exploit

* mmap() a setuid binary, like ping

- Kernel won'’t set write bit in your PTE for ping’s
code section

- Modify your writable page table to give yourself
write permissions to the physical page where ping’s
code section gets cached

- Execute it as root

MELTDOWN...

Reorder buffer
From instruction unit

i
z HeQ # ¥ Data
Instruction 1
queue
FP registers
Load/store
operations
Y : . Operand
Address unit Floating-point buses
operations i
Load buffers T '
Y

Operation bus

Store l, | I o
address 2 Reservation 1
Store - 1 stations fr—
data 4 r Address
Memory unit rE =
';fad Common data bus (CDB)
ata

Plagiarized from:
https://passlab.github.io/CSCE513/notes/lecturel8 ILP_SuperscalarAdvancedARMintel.pdf

Overly simplified MELTDOWN

Int a]256 * cachelinesize] // cache aligned
char *p = &SomethinglCantReadlnKernel
INt X = a[*p * cachelinesize]

* Side channel: whatever gets cached
speculatively reveals *p

What does this mean?

e Supervisor bit Is useless, because
microarchitectural state can be visibly changed
based on speculative execution that ignores the

supervisor bit

* Can no longer put the kernel at the top of the
virtual address space of every process

* https://googleprojectzero.blogspot.com/2015/03
[exploiting-dram-rowhammer-bug-to-gain.html

* https://www.usenix.org/conference/usenixsecuri
tyl8/presentation/lipp

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

