
  

Virtual Memory, Rowhammer, and Meltdown

CSE 536 Spring 2026
jedimaestro@asu.edu



  

Virtual memory...



  Plagiarized from http://www.cs.uni.edu/~fienup/cs142f05/lectures/lec20_OS_virtual_memory.HTM 



  



  



  

Abstractions

● Process hierarchy
● Filesystem and filesystem hierarchy
● Virtual address spaces



  

Reality

● Files are spread all over disk and the memory, 
namespace is shared by many processes

● Virtual address spaces are spread all over the 
disk and memory, physical pages are shared by 
multiple processes

● Processes are an abstraction of an architectural 
state, but the CPU is physically implemented as 
a microarchitecture



  

Linux page cache
● Demand paging

– Only bring blocks into memory, or allocate physical pages, when 
they are used

● Copy-on-write
● Zero page

– rwx permissions are hardware enforced
– Pages can be dirty or clean

● Dirty pages should eventually be written back to disk
– Easier to evict clean pages

● Page replacement algorithm
– E.g., Least Recently Used or LRU



  https://lwn.net/Articles/106177/

https://lwn.net/Articles/106177/


  
https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems

https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems


  

https://wiki.osdev.org/File:Page_table_entry.png

https://wiki.osdev.org/File:Page_table_entry.png


  

Page faults

● Trap to the kernel whenever there is any issue 
with translating a page or accessing the 
memory
– Kernel diagnoses what the problem is

● Fix the problem and let the process continue?
● Or, send SIGSEGV

● There’s a special cache for page table entries 
called a translation lookaside buffer (TLB)



  

Rowhammer...



  

Food for thought

● Information is inherently physical
● Information only has meaning in that it is 

subject to interpretation
● Management information stored in-band with 

regular information
● Programming the weird machine



  Plagiarized from: 
https://en.wikipedia.org/wiki/Row_hammer#/media/File:Row_hammer.svg



  

Step #1: Find aggressor and victim
● Allocate a large chunk of memory, like 1GB or more
● Aggressors X and Y must be different rows in the same bank

– DRAM row is typically >4K and <2MB
– Rows in a bank activated in lockstep

● Pick X and Y as random virtual addresses
– Check if hammering X and Y flips a bit in Z
– If you find that Z (have to check the whole block), that’s your victim

● Hope that you can flip, e.g., the 12th bit in a 64-bit word rather 
than, e.g., the 51st

● munmap() all but these three pages (two aggressors, one victim)



  

Step #2: Randomize physical 
memory

● Why?  So a small change in where a PTE 
points will not go from one data page to 
another.

● Allocate a huge chunk of memory with mmap() 
with MAP_POPULATE

● Throughout the exploit, release a random 4KB 
at a time with madvise + MADV_DONTNEED



  

Step #3: Spray physical memory 
with page tables

● Keep mmap()ing a file with markers in it, 2MB 
aligned
– Why 2MB?  One page table has 512 entries times 

4K = 2MB
– Try to have more page tables in memory than data

● When victim is released it’s likely to be a page table
● When bit is flipped new value is likely to point to a page 

table



  

Step #4: Hammer time

● Check if bit flip changed a mapping in the page 
table to point to another page table
– Only have to check the Nth page within each 2MB 

chunk
● If it’s not pointing to the file, then it’s likely 

pointing to another page table.  Which one?
– Can change it arbitrarily, then scan our virtual 

address space to fine another page that now 
doesn’t point to the file



  

Step #5: Exploit

● mmap() a setuid binary, like ping
– Kernel won’t set write bit in your PTE for ping’s 

code section
– Modify your writable page table to give yourself 

write permissions to the physical page where ping’s 
code section gets cached

– Execute it as root



  

MELTDOWN...



  Plagiarized from: 
https://passlab.github.io/CSCE513/notes/lecture18_ILP_SuperscalarAdvancedARMIntel.pdf



  

Overly simplified MELTDOWN

int a[256 * cachelinesize] // cache aligned
char *p = &SomethingICantReadInKernel
int x = a[*p * cachelinesize]

● Side channel: whatever gets cached 
speculatively reveals *p



  

What does this mean?

● Supervisor bit is useless, because 
microarchitectural state can be visibly changed 
based on speculative execution that ignores the 
supervisor bit

● Can no longer put the kernel at the top of the 
virtual address space of every process



  

● https://googleprojectzero.blogspot.com/2015/03
/exploiting-dram-rowhammer-bug-to-gain.html

● https://www.usenix.org/conference/usenixsecuri
ty18/presentation/lipp

●

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

