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Virtual memory...



  Plagiarized from http://www.cs.uni.edu/~fienup/cs142f05/lectures/lec20_OS_virtual_memory.HTM 



  



  



  

Abstractions

● Process hierarchy
● Filesystem and filesystem hierarchy
● Virtual address spaces



  

Reality

● Files are spread all over disk and the memory, 
namespace is shared by many processes

● Virtual address spaces are spread all over the 
disk and memory, physical pages are shared by 
multiple processes

● Processes are an abstraction of an architectural 
state, but the CPU is physically implemented as 
a microarchitecture



  

Linux page cache
● Demand paging

– Only bring blocks into memory, or allocate physical pages, when 
they are used

● Copy-on-write
● Zero page

– rwx permissions are hardware enforced
– Pages can be dirty or clean

● Dirty pages should eventually be written back to disk
– Easier to evict clean pages

● Page replacement algorithm
– E.g., Least Recently Used or LRU



  https://lwn.net/Articles/106177/

https://lwn.net/Articles/106177/


  
https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems

https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems


  

https://wiki.osdev.org/File:Page_table_entry.png

https://wiki.osdev.org/File:Page_table_entry.png


  

Page faults

● Trap to the kernel whenever there is any issue 
with translating a page or accessing the 
memory
– Kernel diagnoses what the problem is

● Fix the problem and let the process continue?
● Or, send SIGSEGV

● There’s a special cache for page table entries 
called a translation lookaside buffer (TLB)



  

Rowhammer...



  

Food for thought

● Information is inherently physical
● Information only has meaning in that it is 

subject to interpretation
● Management information stored in-band with 

regular information
● Programming the weird machine



  Plagiarized from: 
https://en.wikipedia.org/wiki/Row_hammer#/media/File:Row_hammer.svg



  

Step #1: Find aggressor and victim
● Allocate a large chunk of memory, like 1GB or more
● Aggressors X and Y must be different rows in the same bank

– DRAM row is typically >4K and <2MB
– Rows in a bank activated in lockstep

● Pick X and Y as random virtual addresses
– Check if hammering X and Y flips a bit in Z
– If you find that Z (have to check the whole block), that’s your victim

● Hope that you can flip, e.g., the 12th bit in a 64-bit word rather 
than, e.g., the 51st

● munmap() all but these three pages (two aggressors, one victim)



  

Step #2: Randomize physical 
memory

● Why?  So a small change in where a PTE 
points will not go from one data page to 
another.

● Allocate a huge chunk of memory with mmap() 
with MAP_POPULATE

● Throughout the exploit, release a random 4KB 
at a time with madvise + MADV_DONTNEED



  

Step #3: Spray physical memory 
with page tables

● Keep mmap()ing a file with markers in it, 2MB 
aligned
– Why 2MB?  One page table has 512 entries times 

4K = 2MB
– Try to have more page tables in memory than data

● When victim is released it’s likely to be a page table
● When bit is flipped new value is likely to point to a page 

table



  

Step #4: Hammer time

● Check if bit flip changed a mapping in the page 
table to point to another page table
– Only have to check the Nth page within each 2MB 

chunk
● If it’s not pointing to the file, then it’s likely 

pointing to another page table.  Which one?
– Can change it arbitrarily, then scan our virtual 

address space to fine another page that now 
doesn’t point to the file



  

Step #5: Exploit

● mmap() a setuid binary, like ping
– Kernel won’t set write bit in your PTE for ping’s 

code section
– Modify your writable page table to give yourself 

write permissions to the physical page where ping’s 
code section gets cached

– Execute it as root



  

MELTDOWN...



  Plagiarized from: 
https://passlab.github.io/CSCE513/notes/lecture18_ILP_SuperscalarAdvancedARMIntel.pdf



  

Overly simplified MELTDOWN

int a[256 * cachelinesize] // cache aligned
char *p = &SomethingICantReadInKernel
int x = a[*p * cachelinesize]

● Side channel: whatever gets cached 
speculatively reveals *p



  

What does this mean?

● Supervisor bit is useless, because 
microarchitectural state can be visibly changed 
based on speculative execution that ignores the 
supervisor bit

● Can no longer put the kernel at the top of the 
virtual address space of every process



  

● https://googleprojectzero.blogspot.com/2015/03
/exploiting-dram-rowhammer-bug-to-gain.html

● https://www.usenix.org/conference/usenixsecuri
ty18/presentation/lipp

●

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
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