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Virtual memory...
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:~$ tail -n 16 /proc/ echo $$ /maps | sed "s/ / /g"
7393127ff000 73931280d000 r--p 00000000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931280d000-73931281e000 r-xp 0000e000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931281e000-73931282¢c000 r--p 0001000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
73931282c000-739312830000 r--p 0002c000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
739312830000-739312831000 rw-p 00030000 :01 72300422 /usr/1ib/x86_64-1inux-gnu/libtinfo.so
739312842000-739312849000 r--s 00000000 :01 72286510 /usr/1ib/x86_64-1inux-gnu/gconv/gconv
739312849000-73931284b000 rw-p 00000000 :00 O
73931284b000-73931284d000 r--p 00000000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-1linux-x8!
73931284d000-739312877000 r-xp 00002000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-1linux-x8t
739312877000-739312882000 r--p 0002c000 101 72286234 /usr/1ib/x86_64-1inux-gnu/1ld-1linux-x8!
739312883000-739312885000 r--p 00037000 101 72286234 /usr/1ib/x86_64-1inux-gnu/1ld-1linux-x8t
739312885000-739312887000 rw-p 00039000 101 72286234 /usr/1ib/x86_64-1inux-gnu/ld-Tlinux-x8¢
7ffe8c20a000-7ffe8c22b000 rw-p 0OOOOOOO 0O:00 O [stack]
7ffe8c335000-7ffe8c339000 r--p 00000000 :00 [vvar]
7ffe8c339000-7ffe8c33b00OO r-xp 00OOO00O0 :00 0 [vdso]
ffffffffff600000-ffffffffff601000 --xp OOOOOOOO 0O:00 0O [vsyscall]




Abstractions

* Process hierarchy
* Filesystem and filesystem hierarchy
* Virtual address spaces




Reality

* Files are spread all over disk and the memory,
namespace Is shared by many processes

* Virtual address spaces are spread all over the
disk and memory, physical pages are shared by
multiple processes

e Processes are an abstraction of an architectural
state, but the CPU is physically implemented as
a microarchitecture



Linux page cache

 Demand paging

— Only bring blocks into memory, or allocate physical pages, when
they are used

* Copy-on-write
* Zero page
— rwx permissions are hardware enforced

— Pages can be dirty or clean

 Dirty pages should eventually be written back to disk
— Easier to evict clean pages

* Page replacement algorithm
- E.g., Least Recently Used or LRU



FGO

FMD

FTE


https://lwn.net/Articles/106177/
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https://superuser.com/questions/1740680/are-page-tables-under-utilized-in-x86-systems

Page Table Entry

Bits 31-12 of address

P: Present

R'W: Eead/Write
U'S: User/Supearvisor
PWT: Write-Through
PCD: Cache Disabla
A: Accessed

D: Dirty

G: Global

AVL: Available
PAT: Page Attribute
Table



https://wiki.osdev.org/File:Page_table_entry.png

Page faults

* Trap to the kernel whenever there is any issue
with translating a page or accessing the
memory

- Kernel diagnoses what the problem is

* Fix the problem and let the process continue?
* Or, send SIGSEGV

* There’s a special cache for page table entries
called a translation lookaside buffer (TLB)



Rowhammer...



Food for thought

Information Is inherently physical

Information only has meaning in that it is
subject to interpretation

Management information stored in-band with
regular information

Programming the weird machine
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Step #1: Find aggressor and victim

* Allocate a large chunk of memory, like 1GB or more

* Aggressors X and Y must be different rows in the same bank
- DRAM row is typically >4K and <2MB
- Rows in a bank activated in lockstep

* Pick X and Y as random virtual addresses
— Check if hammering X and Y flips a bit in Z
- If you find that Z (have to check the whole block), that’s your victim

* Hope that you can flip, e.g., the 12" bit in a 64-bit word rather
than, e.qg., the 51+

« munmap() all but these three pages (two aggressors, one victim)



Step #2: Randomize physical
memory

* Why? So a small change in where a PTE
points will not go from one data page to
another.

* Allocate a huge chunk of memory with mmap()
with MAP_POPULATE

* Throughout the exploit, release a random 4KB
at a time with madvise + MADV_DONTNEED



Step #3: Spray physical memory
with page tables

 Keep mmap()ing a file with markers in it, 2ZMB
aligned

- Why 2MB? One page table has 512 entries times
4K = 2MB
- Try to have more page tables in memory than data

* When victim is released it's likely to be a page table

* When bit is flipped new value is likely to point to a page
table



Step #4: Hammer time

* Check if bit flip changed a mapping in the page
table to point to another page table

- Only have to check the Nth page within each 2MB
chunk

 If it's not pointing to the file, then it's likely
pointing to another page table. Which one?
- Can change it arbitrarily, then scan our virtual

address space to fine another page that now
doesn’t point to the file



Step #5: Exploit

* mmap() a setuid binary, like ping

- Kernel won'’t set write bit in your PTE for ping’s
code section

- Modify your writable page table to give yourself
write permissions to the physical page where ping’s
code section gets cached

- Execute it as root



MELTDOWN...
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Overly simplified MELTDOWN

Int a]256 * cachelinesize] // cache aligned
char *p = &SomethinglCantReadlnKernel
INt X = a[*p * cachelinesize]

* Side channel: whatever gets cached
speculatively reveals *p



What does this mean?

e Supervisor bit Is useless, because
microarchitectural state can be visibly changed
based on speculative execution that ignores the

supervisor bit

* Can no longer put the kernel at the top of the
virtual address space of every process



* https://googleprojectzero.blogspot.com/2015/03
[exploiting-dram-rowhammer-bug-to-gain.html

* https://www.usenix.org/conference/usenixsecuri
tyl8/presentation/lipp


https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
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https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
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