
  1

Cryptography Overview (Part 2)

jedimaestro@asu.edu



  2

This lecture...

● What can’t symmetric crypto do?
● Asymmetric crypto introduction (review?)
● Intro to secure hash functions and message 

authentication



This should be review if you took, e.g., CSE 365.  If you need 
more review:

https://www.youtube.com/watch?v=KqqOXndnvic
https://www.youtube.com/watch?v=SkJcmCaHqS0
https://www.youtube.com/watch?v=QgHnr8-h0xI
https://www.youtube.com/watch?v=-dsKYoqwjT0

https://www.youtube.com/watch?v=KqqOXndnvic
https://www.youtube.com/watch?v=SkJcmCaHqS0
https://www.youtube.com/watch?v=QgHnr8-h0xI
https://www.youtube.com/watch?v=-dsKYoqwjT0


  4

Symmetric Crypto

● Confidentiality
● Integrity
● Authentication
● Non-repudiation
● A way to distribute the shared secret keys



  5Source: Wikipedia



  6

How computers handle big numbers…



  

Multiplication is polynomial time in 
number of digits (O(n2) or O(n log n))



  

Modular exponentiation

153189 (mod 251)

Naive way: multiply 153 times itself 189 times.
Won’t work for, e.g., 2048-bit numbers, 

especially for the exponent



  

Better way (all mod 251)

1530 = 1

1531 = 153

1532 = 66

1534 = 89

1538 = 140 

15316 = 22

15332 = 233

15364 = 73

153128 =  58



  

Better way

● 189 in binary is 0b10111101
● 189 = 1*27 + 0*26 + 1*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*20

● 153189 (mod 251) = 153(128+0+32+16+8+4+0+1) (mod 251)
 = 153128 * 15332 * 15316 * 1538 * 1534 * 1531 (mod 251)

 = 58 * 233 * 22 * 140 * 89 * 153 (mod 251)

 = 73



  



  



  

153189 = 73 (mod 251)
189 = log153 73 (mod 251)



  

153??? = 73 (mod 251)
??? = log153 73 (mod 251)

This is called the discrete logarithm, and there is no known algorithm for 
solving it in the general case that is polynomial in the number of digits.



  

153189 = 73 (mod 251)
15364 = 73 (mod 251)



  

153189 ≡ 73 (mod 251)
15364 ≡ 73 (mod 251)



  

153189 ≡ 15364 ≡ 73 (mod 251)



  

Diffie-Hellman (1976)...



  https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#/media/File:Diffie-Hellman_Key_Exchange.svg



  

Diffie-Hellman



  

In the food coloring or paint demos, 
it is assumed that mixing colors is 

cheap, but un-mixing them is 
prohibitively expensive.



  

Modular arithmetic

5 + 7 = 2 (mod 10)
72 = 9 (mod 10)

8 + 8 = 6 (mod 10)



  

Modular arithmetic

8 + 9 = ? (mod 10)
43 = ? (mod 10)

1 + 1 = ? (mod 10)



  

Modular arithmetic

8 + 9 = 7 (mod 10)
43 = 4 (mod 10)

1 + 1 = 2 (mod 10)



  

RSA (1977)

Encryption:
c≡me mod n

Decryption:
cd≡(me)d mod n

RSA provides encryption, 
authentication, and non-repudiation



  

A very loose analogy to ring theory...



  



  



  

RSA

● Security is based on the hardness of integer 
factorization



  

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are 

relatively prime to n
● totient(n) = lcm(p – 1, q – 1) = 780

● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1



  

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Using RSA for key exchange or encryption is often a red 

flag, more commonly used for signatures



  



  



Cryptographic hash functions...



Why hash functions?

● Speed
● Error detection (e.g., checksum)
● Security and privacy



Why cryptographic hash functions?

● Unique identifier for an object
● Integrity of an object

● E.g., message authentication codes
● Digital signatures
● Passwords
● Proof of work



Example

By User:Jorge Stolfi based on Image:Hash_function.svg by Helix84 - Original work for Wikipedia, Public 
Domain, https://commons.wikimedia.org/w/index.php?curid=5290240



What makes a hash function cryptographic?

● One-way function
● Deterministic (same input, same output)
● Infeasible to find message that digests to specific hash value
● Infeasible to find two messages that digest to the same hash
● Avalanche effect (small change in message leads to big 

changes in digest---digests seemingly uncorrelated)
● Still want it to be quick



Algorithms

● MD5: 128-bit digest, seriously broken
● SHA-1: 160-bit digest, not secure against well-funded 

adversaries
● SHA-3: 224 to 512 bit digest, adopted in August of 2015
● CRC32: not cryptographic, very poor choice



Property #1

● Pre-image resistance
● Given h, it should be infeasible to find m such that h = 

hash(m)



Property #2

● Second pre-image resistance
● Given a message m1, it should be infeasible to find 

another message m2 such that... 
hash(m1) = hash(m2)



Property #3

● Collision resistance
● It should be infeasible to find two messages, m1 

and m2 such that... 
hash(m1) = hash(m2)



Wang Xiaoyun

● Tsinghua University
● Contributed a lot of ideas 

to cracking MD5, SHA-0, 
and SHA-1



Attacks

● Pre-image attack
● Collision attack
● Chosen-prefix collision attack
● Birthday attack
● Length extension attack



Chosen-prefix collision attack

● Given two prefixes p1 and p2, find m1 and m2 such that 
hash(p1||m1)=hash(p2||m2)

● p1 and p2 could be domain names in a certificate, 
images, PDFs, etc. … any digital image.

● This is one of the two ways MD5 is broken (other is  
plain old collision resistance), and is how we generated 
the two images with the same MD5 sum for the example 
from the Citizen Lab report



Birthday attack

● Probability of collision is 1 in 2n, but the expected 
number of hashes until two of them collide is sqrt(2n)=2n/2

● Why?  Third try has two opportunities to collide, fourth has 
three opportunities, fifth has six, and so on...



24 people, same birthday?

https://commons.wikimedia.org/wiki/File:Birthday_attack_vs_paradox.svg



Length extension attack

MD5 and SHA-1 vulnerable, SHA-3 is not



  

References

● [Cryptography Engineering] Cryptography Engineering: 
Design Principles and Applications, by Niels Ferguson, 
Bruce Schneier, and Tadayoshi Kohno.  Wiley 
Publishing, 2010.

● [Cryptovirology] Malicious Cryptography: Exposing 
Cryptovirology, by Adam Young and Moti Yung.  Wiley 
Publishing, 2004.

● Lots of images and info plagiarized from Wikipedia


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

