Cryptography Overview (Part 2)

jedimaestro@asu.edu

This lecture...

- What can't symmetric crypto do?
- Asymmetric crypto introduction (review?)
- Intro to secure hash functions and message authentication

This should be review if you took, e.g., CSE 365. If you need more review:

https://www.youtube.com/watch?v=KqqOXndnvic https://www.youtube.com/watch?v=SkJcmCaHqS0 https://www.youtube.com/watch?v=QgHnr8-h0xI https://www.youtube.com/watch?v=-dsKYoqwjT0

Symmetric Crypto

- Confidentiality
- Integrity
- Authentication
- Aon-repudiation
- A way to distribute the shared secret keys

(Plaintext)
Hello World!
(ciphertext)

\#\%giuyrwkmn,s:\{?

Encryption

Decryption

(Shared Secret Key)
Source: Wikipedia

How computers handle big numbers...

Multiplication is polynomial time in number of digits $\left(O\left(n^{2}\right)\right.$ or $\left.O(n \log n)\right)$

Modular exponentiation

$153^{189}(\bmod 251)$

Naive way: multiply 153 times itself 189 times. Won’t work for, e.g., 2048-bit numbers, especially for the exponent

Better way (all mod 251)

$$
\begin{array}{ll}
153^{0}=1 & 153^{8}=140 \\
153^{1}=153 & 153^{16}=22 \\
153^{2}=66 & 153^{32}=233 \\
153^{4}=89 & 153^{64}=73 \\
& 153^{128}=58
\end{array}
$$

Better way

- 189 in binary is 0b10111101
- $189=1^{*} 2^{7}+0^{*} 2^{6}+1 * 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0 * 2^{1}+1^{*} 2^{0}$
- $153^{189}(\bmod 251)=153^{(128+0+32+16+8+4+0+1)}(\bmod 251)$

$$
\begin{aligned}
& =153^{128 * 153^{32} * 153^{16 *} 153^{8} * 153^{4} * 153^{1}(\bmod 251)} \\
& =58 * 233 * 22 * 140 * 89 * 153(\bmod 251) \\
& =73
\end{aligned}
$$

WolframAlpha intelligence

$153^{189}=73(\bmod 251)$
$189=\log _{153} 73(\bmod 251)$

$153^{\text {??? }}=73(\bmod 251)$??? $=\log _{153} 73(\bmod 251)$

This is called the discrete logarithm, and there is no known algorithm for solving it in the general case that is polynomial in the number of digits.

$153^{189}=73(\bmod 251)$ $153^{64}=73(\bmod 251)$

$153^{189} \equiv 73(\bmod 251)$ $153^{64} \equiv 73(\bmod 251)$

$153^{189} \equiv 153^{64} \equiv 73(\bmod 251)$

Diffie-Hellman (1976)...

Diffie-Hellman

Alice		Bob		Eve	
Known	Unknown	Known	Unknown	Known	Unknown
$p=23$		$p=23$		$p=23$	
$g=5$		$g=5$		$g=5$	
$a=6$	b	$b=15$	a		a, b
$A=5^{a} \bmod 23$		$B=5^{b} \bmod 23$			
$A=5^{6} \bmod 23=8$		$B=5^{15} \mathrm{mod} 23=19$			
$B=19$		$A=8$		$A=8, B=19$	
$s=B^{a} \bmod 23$		$s=A^{b} \bmod 23$			
$s=19^{6} \bmod 23=2$		$s=8^{15} \bmod 23=2$			s

In the food coloring or paint demos, it is assumed that mixing colors is cheap, but un-mixing them is prohibitively expensive.

Modular arithmetic

$$
\begin{gathered}
5+7=2(\bmod 10) \\
7^{2}=9(\bmod 10) \\
8+8=6(\bmod 10)
\end{gathered}
$$

Modular arithmetic

$$
\begin{gathered}
8+9=?(\bmod 10) \\
4^{3}=?(\bmod 10) \\
1+1=?(\bmod 10)
\end{gathered}
$$

Modular arithmetic

$$
\begin{gathered}
8+9=7(\bmod 10) \\
4^{3}=4(\bmod 10) \\
1+1=2(\bmod 10)
\end{gathered}
$$

RSA (1977)

Encryption:

$\mathrm{C} \equiv \mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}$

Decryption:
$C^{d} \equiv\left(m^{e}\right)^{d} \bmod n$
RSA provides encryption, authentication, and non-repudiation

A very loose analogy to ring theory...

RSA

- Security is based on the hardness of integer factorization

$$
\mathrm{n}=\mathrm{pq}
$$

- p and q are primes, suppose $p=61, q=53$
- $\mathrm{n}=3233$
- Euler's totient counts the positive integers up to n that are relatively prime to n
- totient $(n)=\operatorname{lcm}(p-1, q-1)=780$
- 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
- 60,120,180,240,300,360,420,480,540,600,660,720,780
- Choose $1<\mathrm{e}<780$ coprime to 780 , e.g., e $=17$
- d is the modular multiplicative inverse of $e, d=413$
- 413 * $17 \bmod 780=1$
- Public key is ($\mathrm{n}=3233, \mathrm{e}=17$)
- Private key is $(n=3233, d=413)$
- Encryption: $c(m=65)=65^{17} \bmod 3233=2790$
- Decryption: $m=2790^{413} \bmod 3233=65$
- Could also do...
- Signature: $\mathrm{s}=100^{413} \bmod 3233=1391$
- Verification: $100=1391{ }^{17} \bmod 3233$
- Fast modular exponentiation is the trick
- Using RSA for key exchange or encryption is often a red flag, more commonly used for signatures

```
medi@route66:~$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>> for i in range (52, 781, 52):
        for j in range (60, 781, 60):
... if (i == j j):
... if (i == j j):
780
>>> print((413 * 17) % 780)
1
>>> print(pow(2790, 413, 3233))
65
>>> print(pow(65, 17, 3233))
2790
>>> print(pow(100, 413, 3233))
1391
>>> print(pow(1391, 17, 3233))
100
>>> \square
```

>>> print(pow(2790, 413, 3233))
65
>>> print(pow(65, 17, 3233))
2790
>>> print(pow(100, 413, 3233))
1391
>>> print(pow(1391, 17, 3233))
100
>>> print(pow(7, 17, 3233))
2369
>>> print((2369*2790) % 3233)
1258
>>> print(pow(1258, 413, 3233))
455
>>> print(7*65)
455
>>> print("{0:b}".format(78913))
10011010001000001
>>> print("{0:b}".format(78913*32))
1001101000100000100000
>>> print("{0:b}".format(78913<<5))
1001101000100000100000

Cryptographic hash functions...

Why hash functions?

- Speed
- Error detection (e.g., checksum)
- Security and privacy

Why cryptographic hash functions?

- Unique identifier for an object
- Integrity of an object
- E.g., message authentication codes
- Digital signatures
- Passwords
- Proof of work

Example

Input

Digest

By User:Jorge Stolfi based on Image:Hash_function.svg by Helix84-Original work for Wikipedia, Public

What makes a hash function cryptographic?

- One-way function
- Deterministic (same input, same output)
- Infeasible to find message that digests to specific hash value
- Infeasible to find two messages that digest to the same hash
- Avalanche effect (small change in message leads to big changes in digest---digests seemingly uncorrelated)
- Still want it to be quick

Algorithms

- MD5: 128-bit digest, seriously broken
- SHA-1: 160-bit digest, not secure against well-funded adversaries
- SHA-3: 224 to 512 bit digest, adopted in August of 2015
- CRC32: not cryptographic, very poor choice

Property \#1

- Pre-image resistance
- Given h, it should be infeasible to find m such that $h=$ hash(m)

Property \#2

- Second pre-image resistance
- Given a message m_{1}, it should be infeasible to find another message m_{2} such that... $\operatorname{hash}\left(m_{1}\right)=\operatorname{hash}\left(m_{2}\right)$

Property \#3

- Collision resistance
- It should be infeasible to find two messages, m_{1} and m_{2} such that... $\operatorname{hash}\left(m_{1}\right)=\operatorname{hash}\left(m_{2}\right)$

Wang Xiaoyun

- Tsinghua University

- Contributed a lot of ideas to cracking MD5, SHA-0, and SHA-1

Attacks

- Pre-image attack
- Collision attack
- Chosen-prefix collision attack
- Birthday attack
- Length extension attack

Chosen-prefix collision attack

- Given two prefixes p_{1} and p_{2}, find m_{1} and m_{2} such that $\operatorname{hash}\left(p_{1} \| m_{1}\right)=\operatorname{hash}\left(p_{2} \| m_{2}\right)$
- p1 and p2 could be domain names in a certificate, images, PDFs, etc. ... any digital image.
- This is one of the two ways MD5 is broken (other is plain old collision resistance), and is how we generated the two images with the same MD5 sum for the example from the Citizen Lab report

Birthday attack

- Probability of collision is 1 in 2^{n}, but the expected number of hashes until two of them collide is $\operatorname{sqrt}\left(2^{n}\right)=2^{n / 2}$
- Why? Third try has two opportunities to collide, fourth has three opportunities, fifth has six, and so on...

24 people, same birthday?

Length extension attack

```
jedi@mariposa:~$ echo "password='lDEnr45#d3'&donut=choc&quantity=1" | md5sum
91a9fc74a98997dba291a26a91c9648e -
jedi@mariposa:~$ echo "password='lDEnr45#d3'&donut=choc&quantity=100" | md5sum
8fdd2d4515bcba887b1b80a653f21e0c -
```


\qquad

```jedi@mariposa:~\$ echo "password=\&donut=choc\&quantity=100" | md5sum8fdd2d4515bcba887b1b80a653f21e0c
```


MD5 and SHA-1 vulnerable, SHA-3 is not

References

- [Cryptography Engineering] Cryptography Engineering: Design Principles and Applications, by Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Wiley Publishing, 2010.
- [Cryptovirology] Malicious Cryptography: Exposing Cryptovirology, by Adam Young and Moti Yung. Wiley Publishing, 2004.
- Lots of images and info plagiarized from Wikipedia

