

# **Finite Fields**

## **Finite Fields**



- Message authentication Galois Counter Mode
- AES S-boxes
- Elliptic curve cryptography

## What is a field



• "In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do."

--Wikipedia

- In cryptography, we often want to "undo things" or get the same result two different ways
  - Math!
- On digital computers the math you learned in grade school is not good enough
  - Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
  - Now the decryption needs the inverse operation. Crap!
  - 1/3 is not easy to deal with (not even in floating point or fixed point)

# What kind of field do we want for crypto?



- Should be integers
- Should be finite
- Should be efficient in digital logic
  - Even for software implementations

#### Good YouTube videos...



- https://www.youtube.com/watch?v=Ct2fyigNgPY
- https://www.youtube.com/watch?v=ColSUxhpn6A

## Field



• Commutative

$$a + b = b + a$$
  
 $a * b = b * a$ 

Associative

(a + b) + c = a + (b + c) (a \* b) \* c = a \* (b \* c)

• Identity

0 != 1, a + 0 = a, a \* 1 = a

- Inverse
  - a + -a = 0
  - a \* a-1 = 1
- Distributive
   a \* (b + c) = (a \* b) + (a \* c)

## Integers mod 100



- Commutative? Associative? Identity?
- Inverse?

## Integers mod 100



- Commutative? Associative? Identity?
- Inverse?
  - Sometimes there is one, e.g., 3 and 67 (201 % 100 = 1)
  - Sometimes not, e.g., 5
  - Integers mod 100 is not a finite field!

## Integers mod 101



- Commutative? Associative? Identity?
- Inverse?
  - Every number 0 < i < 101 has a multiplicative inverse</li>
    - Co-prime to 101, because 101 is prime
  - Integers mod 101 **is** a finite field!
    - True of any prime number
    - In general p<sup>k</sup> where p is prime and k is positive integer





- Want to define a field over  $2^k$  possibilities for a k-bit number
- 2 is prime, all other powers of 2 are not
  - Need to use irreducible polynomials



# https://jedcrandall.github.io/courses/ cse539spring2023/miniaesspec.pdf

Published in Cryptologia, XXVI (4), 2002.

#### Mini Advanced Encryption Standard (Mini-AES): A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan

#### 2.1 The Finite Field GF(2<sup>4</sup>)



The nibbles of Mini-AES can be thought of as elements in the finite field  $GF(2^4)$ . Finite fields have the special property that operations  $(+,-,\times \text{ and } \div)$  on the field elements always cause the result to be also in the field. Consider a nibble  $n = (n_3, n_2, n_1, n_0)$  where  $n_i \in \{0,1\}$ . Then, this nibble can be represented as a polynomial with binary coefficients i.e having values in the set  $\{0,1\}$ :

 $n = n_3 x^3 + n_2 x^2 + n_1 x + n_0$ 

#### **Example 1** Given a nibble, n = 1011, then this can be represented as $n = 1 x^3 + 0 x^2 + 1 x + 1 = x^3 + x + 1$

Note that when an element of  $GF(2^4)$  is represented in polynomial form, the resulting polynomial would have a degree of at most 3.



#### 2.2 Addition in GF(2<sup>4</sup>)

When we represent elements of  $GF(2^4)$  as polynomials with coefficients in  $\{0,1\}$ , then addition of two such elements is simply addition of the coefficients of the two polynomials. Since the coefficients have values in  $\{0,1\}$ , then the addition of the coefficients is just modulo 2 addition or exclusive-OR denoted by the symbol  $\oplus$ . Hence, for the rest of this paper, the symbols + and  $\oplus$  are used interchangeably to denote addition of two elements in  $GF(2^4)$ .

#### Example 2

Given two nibbles, n = 1011 and m = 0111, then the sum, n + m = 1011 + 0111 = 1100 or in polynomial notation:

$$n + m = (x^{3} + x + 1) + (x^{2} + x + 1) = x^{3} + x^{2}$$



#### 2.3 Multiplication in GF(2<sup>4</sup>)

Multiplication of two elements of  $GF(2^4)$  can be done by simply multiplying the two polynomials. However, the product would be a polynomial with a degree possibly higher than 3.

#### Example 3

Given two nibbles, n = 1011 and m = 0111, then the product is:  

$$(x^{3} + x + 1) (x^{2} + x + 1) = x^{5} + x^{4} + x^{3} + x^{3} + x^{2} + x + x^{2} + x + 1$$

$$= x^{5} + x^{4} + 1$$

In order to ensure that the result of the multiplication is still within the field GF(2<sup>4</sup>), it must be reduced by division with an irreducible polynomial of degree 4, the remainder of which will be taken as the final result. An irreducible polynomial is analogous to a prime number in arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself. There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

$$m(x) = x^4 + x + 1$$



#### Example 4

Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(2<sup>4</sup>), called the 'product of  $n \times m$  modulo m(x)' and denoted as  $\otimes$ , is:

$$(x^3 + x + 1) \otimes (x^2 + x + 1) = x^5 + x^4 + 1 \mod x^4 + x + 1$$
  
=  $x^2$ 

This is because:

$$x^{4} + x + 1 \sqrt{x^{5} + x^{4} + 1}$$
(quotient)  
$$\frac{x + 1}{x^{5} + x^{2} + x}$$
$$\frac{x^{5} + x^{2} + x}{x^{4} + x^{2} + x + 1}$$
$$\frac{x^{4} + x + 1}{x^{2}}$$
(remainder)

Note that since the coefficients of the polynomials are in {0,1}, then addition is simply exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own inverse.



| 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F |
| 2 | 0 | 2 | 4 | 6 | 8 | Α | С | E | 3 | 1 | 7 | 5 | В | 9 | F | D |
| 3 | 0 | 3 | 6 | 5 | С | F | Α | 9 | В | 8 | D | E | 7 | 4 | 1 | 2 |
| 4 | 0 | 4 | 8 | С | 3 | 7 | В | F | 6 | 2 | E | Α | 5 | 1 | D | 9 |
| 5 | 0 | 5 | Α | F | 7 | 2 | D | 8 | E | В | 4 | 1 | 9 | С | 3 | 6 |
| 6 | 0 | 6 | С | Α | В | D | 7 | 1 | 5 | 3 | 9 | F | E | 8 | 2 | 4 |
| 7 | 0 | 7 | E | 9 | F | 8 | 1 | 6 | D | Α | 3 | 4 | 2 | 5 | С | В |
| 8 | 0 | 8 | 3 | В | 6 | E | 5 | D | С | 4 | F | 7 | Α | 2 | 9 | 1 |
| 9 | 0 | 9 | 1 | 8 | 2 | В | 3 | Α | 4 | D | 5 | С | 6 | F | 7 | E |
| Α | 0 | Α | 7 | D | E | 4 | 9 | 3 | F | 5 | 8 | 2 | 1 | В | 6 | С |
| В | 0 | В | 5 | E | Α | 1 | F | 4 | 7 | С | 2 | 9 | D | 6 | 8 | 3 |
| С | 0 | С | В | 7 | 5 | 9 | E | 2 | Α | 6 | 1 | D | F | 3 | 4 | 8 |
| D | 0 | D | 9 | 4 | 1 | С | 8 | 5 | 2 | F | В | 6 | 3 | E | Α | 7 |
| E | 0 | E | F | 1 | D | 3 | 2 | С | 9 | 7 | 6 | 8 | 4 | Α | В | 5 |
| F | 0 | F | D | 2 | 9 | 6 | 4 | 8 | 1 | E | С | 3 | 8 | 7 | 5 | Α |



# Why does AES use a finite field?



## DES (16 rounds, 64-bit blocks, 56-bit key)







#### S-boxes

| S <sub>1</sub> | x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0уууу0         | 14     | 4      | 13     | 1      | 2      | 15     | 11     | 8      | 3      | 10     | 6      | 12     | 5      | 9      | 0      | 7      |
| 0уууу1         | 0      | 15     | 7      | 4      | 14     | 2      | 13     | 1      | 10     | 6      | 12     | 11     | 9      | 5      | 3      | 8      |
| 1уууу0         | 4      | 1      | 14     | 8      | 13     | 6      | 2      | 11     | 15     | 12     | 9      | 7      | 3      | 10     | 5      | 0      |
| 1уууу1         | 15     | 12     | 8      | 2      | 4      | 9      | 1      | 7      | 5      | 11     | 3      | 14     | 10     | 0      | 6      | 13     |
| S <sub>2</sub> | x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x |
| 0уууу0         | 15     | 1      | 8      | 14     | 6      | 11     | 3      | 4      | 9      | 7      | 2      | 13     | 12     | 0      | 5      | 10     |
| 0уууу1         | 3      | 13     | 4      | 7      | 15     | 2      | 8      | 14     | 12     | 0      | 1      | 10     | 6      | 9      | 11     | 5      |
| 1уууу0         | 0      | 14     | 7      | 11     | 10     | 4      | 13     | 1      | 5      | 8      | 12     | 6      | 9      | 3      | 2      | 15     |
| 1уууу1         | 13     | 8      | 10     | 1      | 3      | 15     | 4      | 2      | 11     | 6      | 7      | 12     | 0      | 5      | 14     | 9      |
| S <sub>3</sub> | x0000x | x0001x | x0010x | x0011x | x0100x | x0101x | x0110x | x0111x | x1000x | x1001x | x1010x | x1011x | x1100x | x1101x | x1110x | x1111x |
| 0уууу0         | 10     | 0      | 9      | 14     | 6      | 3      | 15     | 5      | 1      | 13     | 12     | 7      | 11     | 4      | 2      | 8      |
| 0уууу1         | 13     | 7      | 0      | 9      | 3      | 4      | 6      | 10     | 2      | 8      | 5      | 14     | 12     | 11     | 15     | 1      |
| 10000          | 13     | 6      | Λ      | q      | 8      | 15     | 3      | 0      | 11     | 1      | 2      | 12     | 5      | 10     | 1/     | 7      |

## How to make S-boxes



- (Have to be invertible if not a Fiestel structure)
- Out of thin air? (DES)
- Randomly? (tricky)
- *π*? (Blowfish)
- Galois multiplicative inverses? (AES)

# Tiny Encryption Algorithm (TEA), Feistel structure with 64 rounds

#include <stdint.h>

```
void encrypt (uint32 t v[2], const uint32 t k[4]) {
   /* a key schedule constant */
   uint32 t delta=0x9E3779B9;
   uint32 t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
   for (i=0; i<32; i++) {</pre>
                                              /* basic cycle start */
       sum += delta;
       v\Theta += ((v1<<4) + k\Theta) ^ (v1 + sum) ^ ((v1>>5) + k1);
       v1 += ((v0 <<4) + k2) \land (v0 + sum) \land ((v0 >>5) + k3);
                                                /* end cycle */
   }
   v[0]=v0; v[1]=v1;
}
void decrypt (uint32 t v[2], const uint32 t k[4]) {
   uint32 t v0=v[0], v1=v[1], sum=0xC6EF3720, i; /* set up; sum is (delta << 5) & 0xFFFFFFF */
   uint32 t delta=0x9E3779B9;
                              /* a key schedule constant */
   uint32 t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
   for (i=0; i<32; i++) {</pre>
                                              /* basic cycle start */
       v1 = ((v0 <<4) + k2) \land (v0 + sum) \land ((v0 >>5) + k3);
       v0 = ((v1 << 4) + k0) (v1 + sum) ((v1 >> 5) + k1);
       sum -= delta:
                                                /* end cycle */
   v[0] = v0; v[1] = v1;
```

AES is very efficient in both hardware and software



- Gallois multiplication built into hardware
- Different word sizes (8-bit, 16-bit, 32-bit, 64-bit)
- Lots of time-space tradeoffs
  - *E.g.*, rolling operations into the S-boxes
- Lots of parallelism
- Not a Fiestel structure
  - No need to leave half a block untouched every round
- 10, 12 or 14 rounds
  - Corresponds to 128-, 192- or 256-bit keys