Finite Fields

Finite Fields

- Message authentication - Galois Counter Mode
- AES S-boxes
- Elliptic curve cryptography

What is a field

- "In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do."
--Wikipedia
- In cryptography, we often want to "undo things" or get the same result two different ways
- Math!
- On digital computers the math you learned in grade school is not good enough
- Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
- Now the decryption needs the inverse operation. Crap!
- $1 / 3$ is not easy to deal with (not even in floating point or fixed point)

What kind of field do we want for crypto?

- Should be integers
- Should be finite
- Should be efficient in digital logic
- Even for software implementations

Good YouTube videos...

- https://www.youtube.com/watch?v=Ct2fyigNgPY
- https://www.youtube.com/watch?v=ColSUxhpn6A

Field

- Commutative

$$
\begin{aligned}
& a+b=b+a \\
& a * b=b * a
\end{aligned}
$$

- Associative

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a * b) * c=a *(b * c)
\end{aligned}
$$

- Identity

$$
0!=1, a+0=a, a * 1=a
$$

- Inverse

$$
\begin{aligned}
& a+-a=0 \\
& a * a^{-1}=1
\end{aligned}
$$

- Distributive

$$
a *(b+c)=(a * b)+(a * c)
$$

Integers mod 100

- Commutative? Associative? Identity?
- Inverse?

Integers mod 100

- Commutative? Associative? Identity?
- Inverse?
- Sometimes there is one, e.g., 3 and 67 (201 \% $100=1$)
- Sometimes not, e.g., 5
- Integers mod 100 is not a finite field!

Integers mod 101

- Commutative? Associative? Identity?
- Inverse?
- Every number $0<\mathrm{i}<101$ has a multiplicative inverse
- Co-prime to 101, because 101 is prime
- Integers mod 101 is a finite field!
- True of any prime number
- In general p^{k} where p is prime and k is positive integer

GF(2)

- Want to define a field over 2^{k} possibilities for a k-bit number
- 2 is prime, all other powers of 2 are not
- Need to use irreducible polynomials

https://jedcrandall.github.io/courses/ cse539spring2023/miniaesspec.pdf

Published in Cryptologia, XXVI (4), 2002.
Mini Advanced Encryption Standard
(Mini-AES):
A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan

2.1 The Finite Field GF(2^{4})

The nibbles of Mini-AES can be thought of as elements in the finite field GF(2^{4}). Finite fields have the special property that operations (,,$+- \times$ and \div) on the field elements always cause the result to be also in the field. Consider a nibble $n=\left(n_{3}, n_{2}, n_{1}, n_{0}\right)$ where $n_{i} \in\{0,1\}$. Then, this nibble can be represented as a polynomial with binary coefficients i.e having values in the set $\{0,1\}$:

$$
\mathrm{n}=\mathrm{n}_{3} \mathrm{x}^{3}+\mathrm{n}_{2} \mathrm{x}^{2}+\mathrm{n}_{1} \mathrm{x}+\mathrm{n}_{0}
$$

Example 1

Given a nibble, $\mathrm{n}=1011$, then this can be represented as

$$
n=1 x^{3}+0 x^{2}+1 x+1=x^{3}+x+1
$$

Note that when an element of $\mathrm{GF}\left(2^{4}\right)$ is represented in polynomial form, the resulting polynomial would have a degree of at most 3 .

2.2 Addition in GF($\mathbf{2}^{4}$)

When we represent elements of $\mathrm{GF}\left(2^{4}\right)$ as polynomials with coefficients in $\{0,1\}$, then addition of two such elements is simply addition of the coefficients of the two polynomials. Since the coefficients have values in $\{0,1\}$, then the addition of the coefficients is just modulo 2 addition or exclusive-OR denoted by the symbol \oplus. Hence, for the rest of this paper, the symbols + and \oplus are used interchangeably to denote addition of two elements in $\mathrm{GF}\left(2^{4}\right)$.

Example 2

Given two nibbles, $\mathrm{n}=1011$ and $\mathrm{m}=0111$, then the sum, $\mathrm{n}+\mathrm{m}=1011+0111=1100$ or in polynomial notation:

$$
\mathrm{n}+\mathrm{m}=\left(\mathrm{x}^{3}+\mathrm{x}+1\right)+\left(\mathrm{x}^{2}+\mathrm{x}+1\right)=\mathrm{x}^{3}+\mathrm{x}^{2}
$$

2.3 Multiplication in GF(2 ${ }^{4}$)

Multiplication of two elements of $\mathrm{GF}\left(2^{4}\right)$ can be done by simply multiplying the two polynomials. However, the product would be a polynomial with a degree possibly higher than 3.

Example 3

Given two nibbles, $\mathrm{n}=1011$ and $\mathrm{m}=0111$, then the product is:

$$
\begin{aligned}
\left(x^{3}+x+1\right)\left(x^{2}+x+1\right)= & x^{5}+x^{4}+x^{3}+x^{3}+x^{2}+x+x^{2}+x+1 \\
& =x^{5}+x^{4}+1
\end{aligned}
$$

In order to ensure that the result of the multiplication is still within the field $\mathrm{GF}\left(2^{4}\right)$, it must be reduced by division with an irreducible polynomial of degree 4 , the remainder of which will be taken as the final result. An irreducible polynomial is analogous to a prime number in arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself. There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

$$
m(x)=x^{4}+x+1
$$

Example 4

Given two nibbles, $\mathrm{n}=1011$ and $\mathrm{m}=0111$, then the final result after multiplication in GF $\left(2^{4}\right)$, called the 'product of $\mathrm{n} \times \mathrm{m}$ modulo $\mathrm{m}(\mathrm{x})$ ' and denoted as \otimes, is:

$$
\begin{aligned}
\left(x^{3}+x+1\right) \otimes\left(x^{2}+x+1\right) & =x^{5}+x^{4}+1 \text { modulo } x^{4}+x+1 \\
& =x^{2}
\end{aligned}
$$

This is because:

$$
\begin{array}{rlr}
& \frac{x+1}{x^{4}+x+} \begin{aligned}
& \begin{array}{r}
x^{5}+x^{4}+1 \\
+x^{5}+x^{2}+x
\end{array} \\
& \begin{array}{c}
x^{4}+x^{2}+x+1 \\
\\
+\quad x^{4}+\quad x+1 \\
x^{2}
\end{array}
\end{aligned} & \text { (quotient) } \\
& \text { (remainder) }
\end{array}
$$

Note that since the coefficients of the polynomials are in $\{0,1\}$, then addition is simply exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own inverse.

\otimes	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	0	2	4	6	8	A	C	E	3	1	7	5	B	9	F	D
3	0	3	6	5	C	F	A	9	B	8	D	E	7	4	1	2
4	0	4	8	C	3	7	B	F	6	2	E	A	5	1	D	9
5	0	5	A	F	7	2	D	8	E	B	4	1	9	C	3	6
6	0	6	C	A	B	D	7	1	5	3	9	F	E	8	2	4
7	0	7	E	9	F	8	1	6	D	A	3	4	2	5	C	B
8	0	8	3	B	6	E	5	D	C	4	F	7	A	2	9	1
9	0	9	1	8	2	B	3	A	4	D	5	C	6	F	7	E
A	0	A	7	D	E	4	9	3	F	5	8	2	1	B	6	C
B	0	B	5	E	A	1	F	4	7	C	2	9	D	6	8	3
C	0	C	B	7	5	9	E	2	A	6	1	D	F	3	4	8
D	0	D	9	4	1	C	8	5	2	F	B	6	3	E	A	7
E	0	E	F	1	D	3	2	C	9	7	6	8	4	A	B	5
F	0	F	D	2	9	6	4	8	1	E	C	3	8	7	5	A

Why does AES use a finite field?

DES (16 rounds, 64-bit blocks, 56-bit key)

Decryption

S-boxes

S_{1}	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
Oyyyyo	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0yyyy1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1yyyy0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1yyyy1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S_{2}	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
Oyyyy0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
$0 \mathrm{Oyyy1}$	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
1yyyy0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
1yyyy1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
S_{3}	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
Oyyyy0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
0yyyy1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
1мnmen	12	6	1	व	8	15	2	\bigcirc	11	1	?	17	5	10	14	7

How to make S-boxes

- (Have to be invertible if not a Fiestel structure)
- Out of thin air? (DES)
- Randomly? (tricky)
- π ? (Blowfish)
- Galois multiplicative inverses? (AES)

Tiny Encryption Algorithm (TEA), Feistel structure with 64 rounds

\#include <stdint.h>

```
void encrypt (uint32_t v[2], const uint32_t k[4]) {
    uint32 t v0=v[0], v1=v[1], sum=0, i; /* set up */
    uint32_t delta=0x9E3779B9; /* a key schedule constant */
    uint32_t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
    for (i=0; i<32; i++) { /* basic cycle start */
        sum += delta;
        v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((vl>>5) + k1);
        v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
    } /* end cycle */
    v[0]=v0; v[1]=v1;
}
void decrypt (uint32_t v[2], const uint32_t k[4]) {
    uint32_t v0=v[0], v1=v[1], sum=0xC6EF3720, i; /* set up; sum is (delta << 5) & 0xFFFFFFFF */
    uint32_t delta=0x9E3779B9; /* a key schedule constant */
    uint32 t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */
    for (i=0; i<32; i++) { /* basic cycle start */
            v1 -= ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);
            v0 -= ((vl<<4) + k0) ^ (v1 + sum) ^ ((vl>>5) + k1);
            sum -= delta;
    } /* end cycle */
    v[0]=v0; v[1]=v1;
}
```


AES is very efficient in both hardware and software

- Gallois multiplication built into hardware
- Different word sizes (8-bit, 16-bit, 32-bit, 64-bit)
- Lots of time-space tradeoffs
- E.g., rolling operations into the S-boxes
- Lots of parallelism
- Not a Fiestel structure
- No need to leave half a block untouched every round
- 10,12 or 14 rounds
- Corresponds to 128-, 192- or 256-bit keys

