
Short Chosen-Prefix Collisions for MD5

and the Creation of a Rogue CA Certificate

Marc Stevens1, Alexander Sotirov2,
Jacob Appelbaum3, Arjen Lenstra4,5, David Molnar6,

Dag Arne Osvik4, and Benne de Weger7

1 CWI, Amsterdam, The Netherlands
2 http://www.phreedom.org
3 http://www.appelbaum.net

4 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
5 Alcatel-Lucent Bell Laboratories

6 University of California at Berkeley
7 EiPSI, TU Eindhoven, The Netherlands

1−7 md5-collisions@phreedom.org

Abstract. We present a refined chosen-prefix collision construction for
MD5 that allowed creation of a rogue Certification Authority (CA) cer-
tificate, based on a collision with a regular end-user website certificate
provided by a commercial CA. Compared to the previous construction
from Eurocrypt 2007, this paper describes a more flexible family of dif-
ferential paths and a new variable birthdaying search space. Combined
with a time-memory trade-off, these improvements lead to just three
pairs of near-collision blocks to generate the collision, enabling construc-
tion of RSA moduli that are sufficiently short to be accepted by current
CAs. The entire construction is fast enough to allow for adequate pre-
diction of certificate serial number and validity period: it can be made to
require about 249 MD5 compression function calls. Finally, we improve
the complexity of identical-prefix collisions for MD5 to about 216 MD5
compression function calls and use it to derive a practical single-block
chosen-prefix collision construction of which an example is given.

Keywords: MD5, collision attack, certificate, PlayStation 3.

1 Introduction

At Eurocrypt 2007, it was shown how chosen-prefix collisions for MD5 can be
constructed and an undesirable consequence for any public key infrastructure
(PKI) was pointed out in the form of different certificates with the same valid
signature (cf. [13]). Actual realization of the threat in question was considered
to be hard due to a combination of difficulties, some related to the construction,
others to the way certificates are produced by CAs. Thus, some CAs kept using
MD5, either consciously based on the perception that the obstacles were too
high, or because they were unaware of lurking dangers.

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 55–69, 2009.
c© International Association for Cryptologic Research 2009

http://www.phreedom.org
http://www.appelbaum.net

56 M. Stevens et al.

It was found, however, that for at least one commercial CA the relevant ob-
stacles could be overcome with non-negligible probability. Understandably, this
triggered new research in the earlier chosen-prefix collision construction. A couple
of non-trivial refinements removed all remaining obstacles, thereby in principle
allowing us to create real havoc.

Obviously, creating havoc was not our goal. It was our intention and prior-
ity that all relevant responsible parties would develop a thorough understand-
ing of the implications of chosen-prefix collisions for MD5. Furthermore, before
publishing the details of our results, we wanted to make sure that all parties
would have had both a strong impetus and ample time to adequately change
their procedures. Therefore, we decided to actually implement our construc-
tion and to try and exploit it in practice by attempting to create a harmless
rogue CA certificate that would be accepted by all regular web browsers: harm-
less, because they would only do so after setting their date back to August
2004, because we would keep the private key of the rogue CA in question under
tight control, and because we would not right away reveal the details of our
method. After a moderate number of attempts we succeeded to create such a
certificate.

The announcement of our successful creation of a rogue CA certificate had
the desired effect. CAs and other vendors responded swiftly and adequately.
We believe that as a result of our exercise, the bar to undermine the security
of PKI was raised, somewhat. Given that the current situation with respect to
usage of MD5 looks much better than when we made our announcement, we
feel that the details behind our method can now be revealed. We also feel that
this should indeed be done to give others the opportunity to further build on
them and to develop a better understanding of the lack of strength of currently
popular cryptographic hash functions. Fully appreciating the details presented
here requires a full understanding of the approach from [13].

We describe, roughly, what was achieved in the Eurocrypt 2007 paper [13]
and why those methods were believed to have limited impact. Given any two
chosen message prefixes P and P ′, it was shown how suffixes S and S′ can be
constructed such that the concatenations P‖S and P ′‖S′ collide under MD5. In
the X.509 certificate context, the prefixes include the Distinguished Name fields,
and the suffixes are the initial parts of the RSA moduli. A simple, previously
published method was then used to construct a further extension T such that
each of P‖S‖T and P ′‖S′‖T is a complete to-be-signed part, with two different
hard to factor RSA moduli contained in S‖T and S′‖T , respectively. Because
the two to-be-signed parts still collide under MD5, this allowed construction of
two X.509 certificates with identical MD5-based signatures but different Distin-
guished Names and different public keys. Put differently, assuming full control
over the prefix part P and RSA public key data of a legitimate user, a certificate
of that user’s data can be used to fraudulently obtain a rogue certificate for
any party identified by a prefix part P ′ selected by the attacker. Using moderate

Short Chosen-Prefix Collisions for MD5 57

resources, the calculation of suffixes S, S′ and T , given any chosen prefixes P
and P ′, can be completed in a day using e.g. a quad-core PC.

One obstacle against actual abuse of this construction is apparent from the
above description. Only the signing CA has full control over the final contents of
the P -part: an attacker will have to wait and see what serial number and validity
period will be inserted. Obviously, an unpredictable P will make it impossible
to concoct the collision required for a rogue certificate. On the other hand, if
the full contents of P can reasonably be predicted one day in advance, nothing
seems to be in the way of the construction of a rogue certificate. That, however,
is not the case: the S and S′ as found during the collision construction of [13]
lead to RSA moduli that are too large. More precisely, S and S′ both typically
consist of 11 near-collision blocks (i.e., 11 · 512 bits) and require 5 additional
blocks to generate secure 8192-bit RSA moduli. On the other hand, CAs do not
necessarily accept RSA moduli of more than 2048 bits. Despite this mismatch,
there was no real incentive to reduce the lengths of the RSA moduli, because the
assumption that P could be predicted a day in advance sounded preposterous
to begin with.

The practical validity of the above assumption came as somewhat of a surprise:
practical in the sense that the prefix P cannot be predicted with 100% certainty,
but with high enough probability to make further research efforts worthwhile
to try and reduce the number of near-collision blocks to, say, 3. In principle
the latter can be achieved by throwing more resources at the construction of
the collision. It quickly turned out, as further explained below, that either the
running time or the space requirements of this approach are prohibitive. To get
the rogue certificate construction to work for an actual CA, a better approach
to chosen-prefix collisions for MD5 was imperative.

Our improved chosen-prefix collision construction for MD5 is based on two
main ingredients. In the first place, we managed to generalize the known differ-
ential path constructions (as described in [13] and extended in [12]) to an entire
family of differential paths. As a result, more bits can be eliminated per pair of
near-collision blocks, at a somewhat higher complexity of the actual construc-
tion of those blocks than before. This is described in Section 3, after notation
and MD5 have been introduced in Section 2. The reader is forewarned that
full appreciation of the improved differential paths requires familiarity with [13,
Section 5]. Secondly, we introduced a variable birthday search that permits a
flexible choice of search space between the two extremes of 96 bits (as in [13])
and 64 bits (as introduced in [12] and actually used for [14]): in this way more
time can be invested in the birthday search to achieve a lower average number of
required near-collision blocks. The details along with the more contrived param-
eter selection that this all leads to can be found in Section 4. The construction
of the rogue CA certificate is described in Section 5. Section 6 describes an
improvement creating a chosen-prefix collision using only a single near-collision
block.

58 M. Stevens et al.

2 Preliminaries

2.1 Notation

MD5 operates on 32-bit words (v31v30 . . . v0) with vi ∈ {0, 1}, that are identified
with elements v =

∑31
i=0 vi2i of Z/232

Z and referred to as 32-bit integers. In this
paper we switch freely between these representations.

Integers are denoted in hexadecimal as, for instance, 1E16 and in binary as
000111102. For 32-bit words X and Y we denote their bitwise AND, OR and
XOR as X ∧ Y , X ∨ Y and X ⊕ Y , respectively, X is the bitwise complement
of X , the i-th bit vi of X = (v31v30 . . . v0) is denoted X [i], and RL(X, n) (resp.
RR(X, n)) is the cyclic left (resp. right) rotation of X by n bit positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that
the messages P‖S and P ′‖S′ collide under MD5. In this paper any variable X
related to the message P‖S or its MD5 calculation, may have a corresponding
variable X ′ related to the message P ′‖S′ or its MD5 calculation. Furthermore,
δX = X ′ − X for such a ‘matched’ X ∈ Z/232

Z. For a ‘matched’ variable Z
that consist of tuples of 32-bit integers, say Z = (z1, z2, . . .), we define δZ as
(δz1, δz2, . . .).

2.2 MD5 Overview

MD5 works as follows:

1. Padding. Pad the message with: first a ‘1’-bit, next the least number of ‘0’
bits to make the length equal to 448 mod 512, and finally the bitlength of
the original unpadded message as a 64-bit little-endian integer. As a result
the total bitlength of the padded message is 512N for a positive integer N .

2. Partitioning. Partition the padded message into N consecutive 512-bit blocks
M1, M2, . . . , MN .

3. Processing. MD5 goes through N+1 states IHVi, for 0 ≤ i ≤ N , called the in-
termediate hash values and denoted this way to achieve consistency with [13].
Each intermediate hash value IHVi consists of four 32-bit words ai, bi, ci, di.
For i = 0 these are fixed public values (a0, b0, c0, d0) = (6745230116,
EFCDAB8916, 98BADCFE16, 1032547616). For i = 1, 2, . . . , N intermediate hash
value IHVi is computed as MD5Compress(IHVi−1, Mi) using the MD5 com-
pression function described in detail below.

4. Output. The resulting hash value is the last intermediate hash value IHVN ,
expressed as the concatenation of the hexadecimal byte strings of the four
words aN , bN , cN , dN , converted back from their little-endian representation.

2.3 MD5 Compression Function

The input for the compression function MD5Compress(IHV, B) is an inter-
mediate hash value IHV = (a, b, c, d) and a 512-bit message block B. The
compression function consists of 64 steps (numbered 0 to 63), split into four

Short Chosen-Prefix Collisions for MD5 59

consecutive rounds of 16 steps each. Each step t uses modular additions, a left
rotation, and a non-linear function ft. These functions involve Addition Con-
stants ACt =

⌊
232 |sin(t + 1)|⌋ for 0 ≤ t < 64, and Rotation Constants RCt

defined as

(RCt, RCt+1, RCt+2, RCt+3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X, Y, Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (X, Y, Z) = (X ∧ Y) ⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X, Y, Z) = (Z ∧ X) ⊕ (Z ∧ Y) for 16 ≤ t < 32,

H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

The message block B is partitioned into sixteen consecutive 32-bit words m0,
m1, . . ., m15 (with little-endian byte ordering), and expanded to 64 words Wt,
for 0 ≤ t < 64, of 32 bits each:

Wt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

To facilitate the analysis we follow an ‘unrolled’ description instead of a cyclic
state. For each step t the compression function algorithm maintains a work-
ing register with 4 state words Qt, Qt−1, Qt−2 and Qt−3 and calculates a new
state word Qt+1. With (Q0, Q−1, Q−2, Q−3) = (b, c, d, a), for t = 0, 1, . . . , 63 in
succession Qt+1 is calculated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62). (1)

3 A New Family of Differential Paths

The suffixes S and S′ in a chosen-prefix collision consist of three consecutive
parts: padding bitstrings, birthday bitstrings and near-collision bitstrings. The

60 M. Stevens et al.

Table 1. Family of partial differential paths using δm11 = ±2q−10 mod 32

t δQt δFt δWt δTt δRt RCt

35 − 60 0 0 0 0 0 ·
61 0 0 ±2q−10 mod 32 ±2q−10 mod 32 ±2q 10

62 ±2q 0 0 0 0 15

63 ±2q 0 0 0 0 21

64 ±2q +
∑w′

λ=0 sλ2q+21+λ mod 32

Here w′ = min(w, 31 − q) and s0, . . . , sw′ ∈ {−1, 0, +1} for a fixed parameter w ≥ 0.
Interesting values for w are between 2 and 5.

padding bitstrings are arbitrarily chosen such that the birthday bitstrings end
on the same 512-bit block border. The birthday bitstrings result in a δIHV that
will be eliminated by a sequence of near-collision blocks which make up the near-
collision bitstrings as described in [13, Section 5.3]. Fewer near-collision blocks
are required if the family of differential paths is more effective, whereas finding
a δIHV that requires fewer near-collision blocks increases the birthday search
complexity. Thus, if both search time and number of near-collision blocks are
limited, a more effective family of differential paths is required.

In our target application, generating a rogue CA certificate, we have to deal
with two hard limits. Because the CA that is supposed to sign our (legitimate)
certificate does not accept certification requests for RSA moduli larger than
2048 bits, each of our suffixes S and S′ and their common appendage T must
fit in 2048 bits. This implies that we can use at most 3 near-collision blocks.
Furthermore, to reliably predict the serial number, the entire construction must
be performed within a few days.

Thus, as shown in Table 1, we have extended the family of differential paths
used to construct chosen-prefix collisions. The larger choice is parameterized by
the non-negative integer w: a larger value allows elimination of more differences
in δIHV per near-collision block, but increases the cost of constructing each
near-collision block by a factor of roughly 22w. The value for w in Table 1 can
be chosen freely, however due to the blow-up factor of 22w only the values 2, 3,
4, and 5 are of interest.

Compared to the earlier differential paths in [13, Table 2] and [12, Table 7-2],
the new ones vary the carry propagations in the last 3 steps and the boolean
function difference in the last step. This change affects the working state only in
difference δQ64. Each possible value δQ64 may be caused by many different carry
propagations and boolean function differences. When performing the collision
finding for an actual near-collision block using a particular differential path, we
do not consider just one such possible variation but for the last 3 steps check
only if the δQt’s are as specified.

Short Chosen-Prefix Collisions for MD5 61

4 Variable Birthday Search Space, Time-Memory
Trade-Off

A birthday search on a search space V is generally performed by iterating a
properly chosen deterministic function f : V → V and by assuming that the
points of V thus visited form a ‘random walk’ [9]. After approximately

√
π|V |/2

iterations one may expect to have encountered a collision, i.e., different points
x and y such that f(x) = f(y). Because the entire trail can in practice not
be stored and to take advantage of parallelism, different pseudo-random walks
are generated, of which only the startpoints, lengths, and endpoints are kept.
The walks are generated to end on ‘distinguished points’, points with an easily
recognizable bitpattern depending on |V |, available storage and other charac-
teristics. The average length of a walk is inversely proportional to the fraction
of distinguished points in V . Because intersecting walks share their endpoints,
they can easily be detected. The collision point can then be recomputed given
the startpoints and lengths of the two colliding walks.

Let p be the probability that a birthday collision satisfies additional conditions
that cannot be captured by V or f . On average 1/p birthday collisions have to
be found at a cost of Ctr =

√
π|V |/(2p) iterations, plus recomputation of 1/p

intersecting walks at Ccoll iterations. To achieve Ccoll ≈ ε ·Ctr for any given ε ≤ 1
and optimizing for the expected walk lengths, one needs to store approximately
1/(p · ε) walks. The value for p depends in an intricate way on k (cf. below), w,
and the targeted number of near-collision blocks and is extensively tabulated in
the final version [15] of [13]. The value for ε depends on the amount of available
space to store walks. For very small ε the overall birthdaying complexity is
about Ctr.

The first chosen-prefix collision example from [13] used a 96-bit birthday
search space V with |V | = 296 to find a δIHV = (δa, δb, δc, δd) with δa = 0,
δb = δc = δd. This search can be continued until a birthday collision is found
that requires a sufficiently small number of near-collision blocks, which leads to
a trade-off between the birthday search and the number of blocks. If one would
aim for just 3 near-collision blocks, one expects 257.33 MD5 compressions for the
96-bit birthday search, which would take about 50 days on 215 PlayStation 3
game consoles.

By leaving δb free, we get an improved 64-bit search space (cf. [12], [14]).
In the resulting birthday collisions, the differences in δb compared to δc were
handled by the differential path from [12, section 7.4] which corresponds to
δQ64 = ±2q ∓ 2q+21 mod 32 in Table 1 (cf. equation 2.3(1)). This significantly
decreasing the birthday search complexity, but also increases the average number
of near-collision blocks. When aiming for 3 blocks, birthdaying requires about
255.73 MD5 compressions. But the probability that a birthday collision is useful
becomes so small that the space requirements are prohibitive: about 250.15 bytes,
i.e., more than a petabyte.

A more flexible approach is obtained by interpolating between the above 64-
bit and 96-bit birthday searches, while exploiting the family of differential paths
from Section 3. For any k ∈ {0, 1, . . . , 32}, we can do a (64 + k)-bit search

62 M. Stevens et al.

Table 2. Birthday complexities and memory requirements for k = 0

w = 0 w = 1 w = 2 w = 3 w = 4 w = 5

r Ctr M Ctr M Ctr M Ctr M Ctr M Ctr M

14 236.68 1MB 234.01 1MB 232.96 1MB 232.84 1MB 232.83 1MB 232.83 1MB
13 237.55 1MB 234.69 1MB 233.22 1MB 232.93 1MB 232.88 1MB 232.87 1MB
12 238.55 1MB 235.59 1MB 233.71 1MB 233.16 1MB 233.02 1MB 232.98 1MB
11 239.68 2MB 236.71 1MB 234.50 1MB 233.63 1MB 233.34 1MB 233.24 1MB
10 240.97 11MB 238.06 1MB 235.60 1MB 234.42 1MB 233.91 1MB 233.71 1MB
9 242.40 79MB 239.63 2MB 237.02 1MB 235.56 1MB 234.80 1MB 234.45 1MB
8 244.02 732MB 241.43 21MB 238.76 1MB 237.09 1MB 236.05 1MB 235.51 1MB
7 245.73 8GB 243.43 323MB 240.83 9MB 239.02 1MB 237.73 1MB 236.95 1MB
6 247.92 164GB 245.69 7GB 243.22 241MB 241.40 20MB 239.89 3MB 238.85 1MB
5 249.82 3TB 247.92 164GB 245.89 10GB 244.20 938MB 242.59 102MB 241.34 18MB
4 249.33 2TB 247.42 82GB 245.81 9GB 244.55 2GB
3 248.17 231GB

similar to the one above, but with δb = δc mod 2k. Since δb does not introduce
new differences compared to δc in the lower k bits, the average number of near-
collision blocks may be reduced – in particular when taking advantage of our
new family of differential paths – while incurring a higher birthdaying cost. For
any targeted number of near-collision blocks, this leads to a trade-off between
the birthdaying cost and space requirements (unless the number of blocks is
at least 6, since then 241MB suffices for the plausible choice w = 2). Table 2
gives birthday complexities for k = 0, a range of w-values to control the number
of differences that can be eliminated per near-collision block, and number r of
near-collision blocks. The smallest amount of memory required for Ccoll to be
smaller than Ctr is denoted by M .

Having a cluster of 215 PlayStation 3 (PS3) game consoles at our disposal
obviously influenced our parameter choices. When running Linux on a PS3,
our application has access to 6 Synergistic Processing Units (SPUs), a general
purpose CPU, and about 150MB of RAM per PS3. For our birthday search, the
6× 215 SPUs are computationally equivalent to approximately 8600 regular 32-
bit cores, due to each SPU’s 4× 32-bit wide SIMD architecture. The other parts
of the chosen-prefix collision construction are not suitable for the SPUs, but
we were able to use the 215 PS3 CPUs for the construction of the actual near-
collision blocks. With these resources, the choice w = 5 still turned out to be
acceptable despite the 1000-fold increase in the cost of the actual near-collision
block construction. This is the case even for the hard cases with many differences
between IHV and IHV′: as a consequence the differential paths contain many
bitconditions which leaves little space for so-called ‘tunnels’ (cf. [6]), thereby
complicating the near-collision block construction.

For w = 5 and the targeted 3 near-collision blocks, Table 3 shows the time-
memory tradeoff when the birthday search space is varied with k. With 150MB at
our disposal per PS3, for a total of about 30GB, we decided to use k = 8 as this
optimizes the overall birthday complexity for the plausible case that the birthday

Short Chosen-Prefix Collisions for MD5 63

Table 3. Birthday complexities and memory requirements for r = 3

w = 3 w = 4 w = 5

k Ctr M Ctr M Ctr M

0 248.17 231GB
2 249.10 210GB
4 250.43 330GB 249.29 68GB
6 251.33 287GB 250.54 96GB 249.69 30GB
8 251.98 177GB 250.74 32GB 249.99 11GB
10 252.43 82GB 251.24 16GB 250.44 5GB
12 252.44 22GB 251.64 7GB 250.90 3GB
14 252.76 9GB 252.01 3GB 251.38 2GB
16 253.13 4GB 252.48 2GB 251.96 675MB
18 253.59 2GB 253.02 733MB 252.61 418MB
20 253.96 673MB 253.46 340MB 253.13 215MB
22 254.43 324MB 254.01 182MB 253.73 123MB
24 254.92 160MB 254.59 102MB 254.33 71MB
26 255.52 92MB 255.25 64MB 255.04 47MB
28 256.11 52MB 255.95 42MB 255.83 36MB
30 256.74 32MB 256.68 29MB 256.61 26MB
32 257.27 17MB 257.27 17MB 257.27 17MB

search takes
√

2 times longer than expected. The overall chosen-prefix collision
construction takes on average less than a day on the cluster of PS3s. In theory we
could have used 1TB (or more) of hard drive space, in which case it would have
been optimal to use k = 0 for a birthday search of about 20 PS3 days.

5 Rogue CA Certificate Construction

In this section we present some of the details of the construction of the to-be-
signed parts of our colliding certificates, as outlined in Figure 1.

serial number

validity period

commercial CA name

domain name

2048 bit RSA public key

serial number

validity period

commercial CA name

rogue CA name

1024 bit RSA public key

legitimate website
certificate

rogue CA certificate

chosen prefixes

collision bits

identical suffixes

v3 extensions

tumor

“CA = TRUE”

v3 extensions

“CA = FALSE”

Fig. 1. The to-be-signed parts of the colliding certificates

64 M. Stevens et al.

The chosen prefix of the website certificate contains a subject Distinguished
Name (a domain name), as well as the first 208 bits of the RSA modulus, chosen
at random, as padding to reach proper alignment with the rogue CA certificate.
Furthermore, an educated guess has to be included for the serial number and
validity period fields that the signing CA will insert when it processes the legit-
imate website’s certification request. For the targeted commercial CA it turned
out, based on repeated observations, that the validity period can be predicted
very reliably as the period of precisely one year plus one day, starting exactly six
seconds after a certification request is submitted. Furthermore, it was found that
the targeted CA uses sequential serial numbers. Being able to predict the next
serial number, however, is not enough, because the construction of the collision
can be expected to take at least a day, implying a substantial and uncertain
increment in the serial number by the time the collision construction is finished.
The increment in serial number over a weekend, however, does not vary a lot
and Monday morning’s serial numbers can be predicted, roughly, on the Friday
afternoon before.

The chosen prefix of the rogue CA certificate contains a short rogue CA
name, a 1024-bit RSA public key, and the first part of the X.509v3 extension
fields. One of these extension fields is the ‘basic constraints’ field, containing
a bit that identifies the certificate as a CA certificate (in Figure 1 denoted by
“CA=TRUE”). The final part of the rogue chosen prefix contains an indication
that all remaining bits of this to-be-signed part should be interpreted as an
extension field of the type “Netscape Comment”, a field that is ignored by most
application software. In Figure 1 this field is denoted as ‘tumor’.

Given these two chosen prefixes, the collision bits consisting of birthday bits
and near-collision blocks are computed as described above. We describe how
those bits are interpreted on either side. The birthday bits occupy 96 bits. Im-
mediately after them there is a border between MD5 input blocks. In the website
certificate the birthday bits are part of the RSA modulus, in the rogue CA cer-
tificate they belong to the tumor.

After the birthday bits, there are 3 near-collision blocks of 512 bits each.
In the website certificate these are part of the RSA modulus, thereby fixing
208 + 96 + 3 × 512 = 1840 bits of the website’s RSA modulus. In the rogue CA
certificate these 3 blocks are the second part of the tumor.

After the collision bits, another 2048−1840 = 208 bits are needed to complete
the website’s 2048-bit RSA modulus. These 208 bits have to be determined in
such a way that the complete factorization of the RSA modulus is known, in
order to be able to submit a valid certificate signing request for the website. The
RSA modulus does not have to be secure as it will not be used after obtaining
the website’s certificate. Its least significant 208 bits are determined as follows.
Let B denote the fixed 1840-bit part of the RSA modulus followed by 208 one
bits. Now select a random 224-bit integer q until B mod q is less than 2208, and
keep doing so until both q and �B/q
 are prime. As a result n = �B/q
q has
the desired 1840 leading bits and, for purely esthetic reasons, n’s smallest prime

Short Chosen-Prefix Collisions for MD5 65

factor q is larger than the 67-digit largest factor found (so far) using the Elliptic
Curve integer factorization method.

Finally the website’s RSA public exponent is set, followed by the X.509v3
extensions of the website certificate. All bits after the collision bits in the website
certificate’s to-be-signed part are copied to the tumor in the rogue CA certificate.

A legitimate PKCS#10 Certificate Signing Request can now be submitted to
the signing CA. This CA requires proof of possession of the private key corre-
sponding to the public key inside the request. This is done by signing the request
using this private key and this is the sole reason that we needed the factoriza-
tion of the website’s RSA modulus. Upon correct submission, the signing CA
returns a website certificate. If the serial number and validity period as inserted
by the CA indeed match our guess, then the website certificate’s to-be-signed
part will collide under MD5 with the rogue CA certificate’s to-be-signed part,
and the signing CA’s MD5-based digital signature will be equally valid for the
rogue data.

Getting the right serial number at the right time requires some care. About
half an hour before the targeted submission moment, the same request is submit-
ted, and the serial number in the resulting certificate is inspected. If it is already
too high, the entire attempt has to be abandoned. Otherwise, the request is re-
peatedly submitted, with a frequency depending on the gap that may still exist
between the serial number received and the targeted one, and taking into ac-
count possible certification requests by others. In this way the serial number is
slowly nudged toward the right value at the right time.

A proof of concept rogue CA certificate constructed in this manner, where
it required some experimentation and a moderate number of attempts to get
the correct serial number and validity period, was obtained using a commer-
cial CA. Full details, including the rogue CA certificate, are available from
www.win.tue.nl/hashclash/rogue-ca/.

6 Independent Additional Improvement

We show how to construct a chosen-prefix collision for MD5 that consists of 84
birthday bits followed by one pair of near-collision blocks, for a chosen-prefix
collision-causing appendage of 84+512 = 596 bits. The construction is based on
an even richer family of differential paths that allows elimination using a single
pair of near-collision blocks of a set of δIHVs that is bounded enough so that
finding the near-collision blocks is still feasible, but large enough that such a
δIHV can be found efficiently by a birthday search. Instead of using the family
of differential paths based on δm11 = ±2i, we use the fastest known collision
attack for MD5 and vary the last few steps to find a large family of differential
paths.

We first present a new collision attack for MD5 with complexity of approx-
imately 216 MD5 compressions improving upon the 220.96 MD5 compressions
required in [20]. Our starting point is the partial differential path for MD5 given
in Table 4. It is based on message differences δm2 = 28, δm4 = δm14 = 231 and

http://www.win.tue.nl/hashclash/rogue-ca/

66 M. Stevens et al.

Table 4. Partial differential path for fast near-collision attack

t δQt δFt δWt δTt δRt RCt

30 − 33 0 0 0 0 0 ·
34 0 0 215 215 231 16

35 231 231 231 0 0 23

36 231 0 0 0 0 4

37 231 231 231 0 0 11

38 − 46 231 231 0 0 0 ·
47 231 231 28 28 231 23

48 0 0 0 0 0 6

49 0 0 0 0 0 10

50 0 0 231 0 0 15

51 − 59 0 0 0 0 0 ·
60 0 0 231 231 −25 6

61 −25 0 215 215 225 10

62 −25 + 225 0 28 28 223 15

63 −25 + 225 + 223 25 − 223 0 25 − 223 226 − 214 21

64 −25 + 225 + 223 + 226 − 214

Partial differential path for t = 29, . . . , 63 using message differences δm2 = 28, δm4 =
δm14 = 231, δm11 = 215. The probability that it is satisfied is approximately 2−14.5.

δm11 = 215 which is very similar to those used by Wang et al. in [17] for the
first collision attack against MD5. This partial differential path can be used for
a near-collision attack with complexity of approximately 214.8 MD5 compres-
sions. This leads in the usual fashion to an identical-prefix collision attack for
MD5 that requires approximately 216 MD5 compressions, since one has to do
it twice: first to add differences to δIHV and then to eliminate them again. It
should be noted that usually bitconditions are required on the IHV and IHV′

between the two collision blocks which imply an extra factor in complexity. In
the present case, however, we can construct a large set of differential paths for
the second near-collision block that will cover all bitconditions that are likely to
occur, thereby avoiding the extra complexity.

By properly tuning the birthday search, the same partial differential path
leads to the construction of a single near-collision block chosen-prefix collision
for MD5. By varying the last steps of the differential path and by allowing the
collision finding complexity to grow by a factor of about 226, we have found
a set S of about 223.3 different δIHV = (δa, δb, δc, δd) of the form δa = −25,
δd = −25 + 225, δc = −25 mod 220 that can be eliminated. Such δIHVs can be
found using an 84-bit birthday search with step function f : {0, 1}84 → {0, 1}84

of the form

f(x) =

{
φ(MD5compress(IHV, B‖x) + δÎHV) for σ(x) = 0
φ(MD5compress(IHV′, B′‖x)) for σ(x) = 1,

Short Chosen-Prefix Collisions for MD5 67

Table 5. Example single-block chosen-prefix collision

Message 1
4F64656420476F6C6472656963680A4F64656420476F6C6472656963680A4F64

656420476F6C6472656963680A4F64656420476FD8050D0019BB9318924CAA96

DCE35CB835B349E144E98C50C22CF461244A4064BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF67C12978647F5AF123DE3ACF844085CD025B956

Message 2
4E65616C204B6F626C69747A0A4E65616C204B6F626C69747A0A4E65616C204B

6F626C69747A0A4E65616C204B6F626C69747A0A75B80E0035F3D2C909AF1BAD

DCE35CB835B349E144E88C50C22CF461244A40E4BF1AFAECC5820D428AD38D6B

EC89A5AD51E29063DD79B16CF6FC11978647F5AF123DE3ACF84408DCD025B956

where δÎHV is of the required form, σ : x �→ {0, 1} is a balanced selector function
and φ(a, b, c, d) �→ a‖d‖(c mod 220). There are 2128−84 = 244 possible δIHVs of
this form, of which only about 223.3 are in the allowed set S. It follows that a
birthday collision has probability p = 223.3/(244 · 2) = 2−21.7 to be useful, where
the additional factor 2 stems from the fact that different prefixes are required.

A useful birthday collision can be expected after
√

π284/(2p) ≈ 253.2 MD5
compressions, requires 400MB of storage and takes about 3 days on 215 PS3s.
The expected complexity of finding the actual near-collision blocks is bounded
by about 214.8+26 = 240.8 MD5 compressions. In Table 5 two 128-byte mes-
sages are given both consisting of a 52-byte chosen prefix and a 76-byte
single-block chosen-prefix collision suffix and with colliding MD5 hash value
D320B6433D8EBC1AC65711705721C2E1.

7 Conclusion

We have shown that the length of formerly rather long chosen-prefix collisions
for MD5 can be reduced to a minimum at a still acceptable cost, and that short
enough chosen-prefix collision-causing appendages can be found fast enough to
cause trouble, if so desired.

As secure cryptographic hash function for digital signature applications, MD5
has been declared dead over and over again. The improvements in the collision
construction for MD5 presented here firmly hammer another nail into its coffin.
We have been told that simply removing all existing MD5 applications would
break too much. Nevertheless, we hope that our work has contributed to a sooner
ending of MD5’s funeral.

In Table 6 we present a historical overview of the decline in complexity of
MD5 and SHA-1 collision finding. It clearly illustrates that attacks only get
better, not worse. Not reflected in the table is the fact that already in 1993 it
was known that there was serious trouble with MD5, based on collisions in its
compression function (cf. [1], [3]). We leave any speculation about the future of
SHA-1 cryptanalysis to the knowledgeable reader.

A possible mitigation of the risk posed by chosen-prefix collisions when sign-
ing documents is to let the signer add a sufficient amount of fresh randomness at

68 M. Stevens et al.

Table 6. Collision complexities – Historical overview

MD5 SHA-1
year identical-prefix chosen-prefix identical-prefix chosen-prefix

pre-2004 264 (trivial) 264 (trivial) 280 (trivial) 280 (trivial)
2004 240 [16], [17]
2005 237 [5] 269 [18]

263 [19]
2006 232 [6], [11] 249 [13] 280−ε [10]
2007 225 [12] 242 [12] 261 [8]
2008 221 [20]
2009 216 (this paper) 239 (this paper) 252 [7]

Complexity is given as the number of calls to the relevant compression function. The
figures are optimized for speed, i.e., for collisions using any number of near-collision
blocks. For other collision lengths the complexities may differ.

the appropriate spot in the to-be-signed data, i.e., not as a suffix but preferably
somewhere early on. For certificates the serial number, or even a somewhat vari-
able validity period, would be an appropriate spot. Although this would work, it
can be argued that such a countermeasure relies on unintentional choices of the
X.509 certificate standard. Indeed, we would be in favor of a more fundamental
way to add randomness to to-be-hashed data, such as using randomized hashing
as a mode of operation for hash functions as proposed in [4]. The collision was, at
least partially, achievable because of ‘flabby structure’ of the certificate (cf. [2]), so
that may have to be addressed as well. On the other hand, a more ‘rigid’ structure
would not be an excuse to use a poor hash function: irrespective of the elegance
or lack thereof of the certificate structure, we need a solid hash function.

As far as we know, no harm was done using our rogue CA certificate. The
positive effects we intended to achieve by its construction have been realized.
From this point of view, and because it required new cryptanalytic insights
in MD5, the project described in this paper was very gratifying. Nevertheless,
there was another, secondary aspect that is worth mentioning here. Although,
as stated earlier, creating havoc was not our goal, we must admit that some
havoc was created by our announcement. Despite our best efforts to inform the
party that was arguably most directly affected by our work (as documented on
one of the related websites), we also felt we should not reveal our identities to
avoid any attempt to file an injunction barring our announcement. Overall, this
did not stimulate a healthy exchange of information of which all parties involved
could have profited. We do not know how the present legal climate could best
be changed to address this problem, but hope that the difficulties as clearly
observed in our case help to expedite a solution.

Acknowledgements

We are grateful for comments by the Crypto 2009 reviewers, and support by the
European Commission through the EU ICT program ECRYPT II, by the Swiss
National Science Foundation, and by EPFL DIT.

Short Chosen-Prefix Collisions for MD5 69

References

1. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

2. Diffie, W.: Personal communication (January 2009)
3. Dobbertin, H.: Cryptanalysis of MD5 Compress (May 1996),

http://www-cse.ucsd.edu/~bsy/dobbertin.ps

4. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006), http://tools.ietf.org/html/draft-irtf-cfrg-rhash-01

5. Klima, V.: Finding MD5 Collisions on a Notebook PC Using Multi-message Mod-
ifications, Cryptology ePrint Archive, Report 2005/102

6. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute, Cryptol-
ogy ePrint Archive, Report 2006/105

7. McDonald, C., Hawkes, P., Pieprzyk, J.: SHA-1 collisions now 252. In: Eurocrypt
2009 Rump session

8. Mendel, F., Rechberger, C., Rijmen, V.: Update on SHA-1. In: Crypto 2007 Rump
session

9. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of Cryptology 12(1), 1–28 (1999)

10. Rechberger, C.: Unpublished result (2006)
11. Stevens, M.: Fast Collision Attack on MD5, Cryptology ePrint Archive, Report

2006/104
12. Stevens, M.: On collisions for MD5, Master’s thesis, TU Eindhoven (June 2007),

http://www.win.tue.nl/hashclash/

13. Stevens, M., Lenstra, A., de Weger, B.: Chosen-Prefix Collisions for MD5 and Col-
liding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

14. Stevens, M., Lenstra, A., de Weger, B.: Predicting the winner of the 2008 US
presidential elections using a Sony PlayStation 3 (2007),
http://www.win.tue.nl/hashclash/Nostradamus/

15. Stevens, M., Lenstra, A., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Applications (in preparation)

16. Wang, X., Lai, X., Feng, D., Yu, H.: Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. In: Crypto 2004 Rump Session (2004)

17. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

19. Wang, X., Yao, A., Yao, F.: New Collision Search for SHA-1. In: Crypto 2005
Rump session

20. Xie, T., Liu, F., Feng, D.: Could The 1-MSB Input Difference Be The Fastest
Collision Attack For MD5?, Cryptology ePrint Archive, Report 2008/391

http://www-cse.ucsd.edu/~bsy/dobbertin.ps
http://tools.ietf.org/html/draft-irtf-cfrg-rhash-01
http://www.win.tue.nl/hashclash/
http://www.win.tue.nl/hashclash/Nostradamus/

	Short Chosen-Prefix Collisions for MD5and the Creation of a Rogue CA Certificate
	Introduction
	Preliminaries
	Notation
	MD5 Overview
	MD5 Compression Function

	A New Family of Differential Paths
	Variable Birthday Search Space, Time-Memory Trade-Off
	Rogue CA Certificate Construction
	Independent Additional Improvement
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

