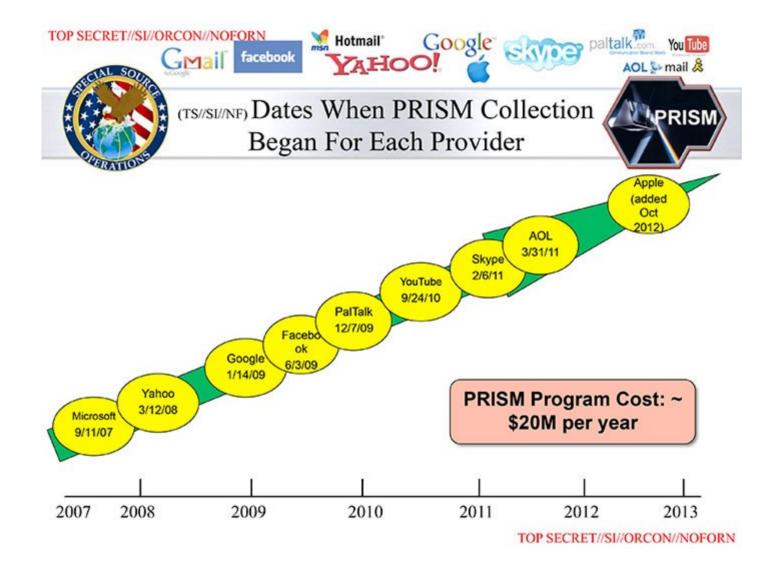
OTR (review) and Signal


CSE 539 Spring 2023 jedimaestro@asu.edu

https://en.wikipedia.org/wiki/Source_(journalism)

- "On the record": all that is said can be quoted and attributed.
- "Unattributable": what is said can be reported but not attributed.
- "Off the record": the information is provided to inform a decision or provide a confidential explanation, not for publication.

https://www.theguardian.com/film/2014/oct/11/citizenfour-review-snowden-vindicated-poitras-nsa-journalism

OTR (review)

- Off-The-Record messaging
- 2004, Nikita Borisov, Ian Goldberg, Eric Brewer.
 "Off-the-Record Communication, or, Why Not To Use PGP"
- (PGP is from 1991, basically RSA for email)

https://otr.cypherpunks.ca/help/3.2.0/authenticate.php?lang=en

Requirements, OTR vs. TLS...

- Forward secrecy
 - Both OTR and TLS care, for different reasons
- Deniable authentication a.k.a. off-the-record
 - TLS doesn't care about this, OTR does
- Future secrecy
 - TLS doesn't care about this, OTR does it by accident
- Out-of-order messages, parties offline for long periods of time, groups...
 - TLS doesn't need to worry about any of these, nor does OTR (Signal does)

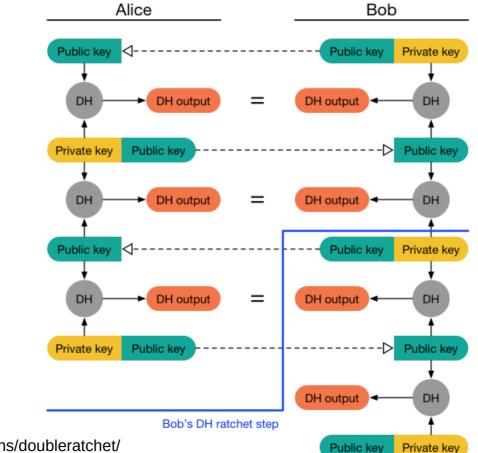
Off-The-Record (OTR) Messaging

- Based on Diffie-Hellman and AES, and originally SHA-1
 - There are new versions
- Deniable Authentication
 - "Off the record" in journalism
- Forward secrecy
 - Ephemeral key exchange
- Future secrecy (not a design goal, but has it)

Deniable Authentication

- Concept of "malleability"
- Basic idea has two parts:
 - Hash the decryption key for a message, use the hash digest as an authentication key
 - Reveal the authentication key in the next message

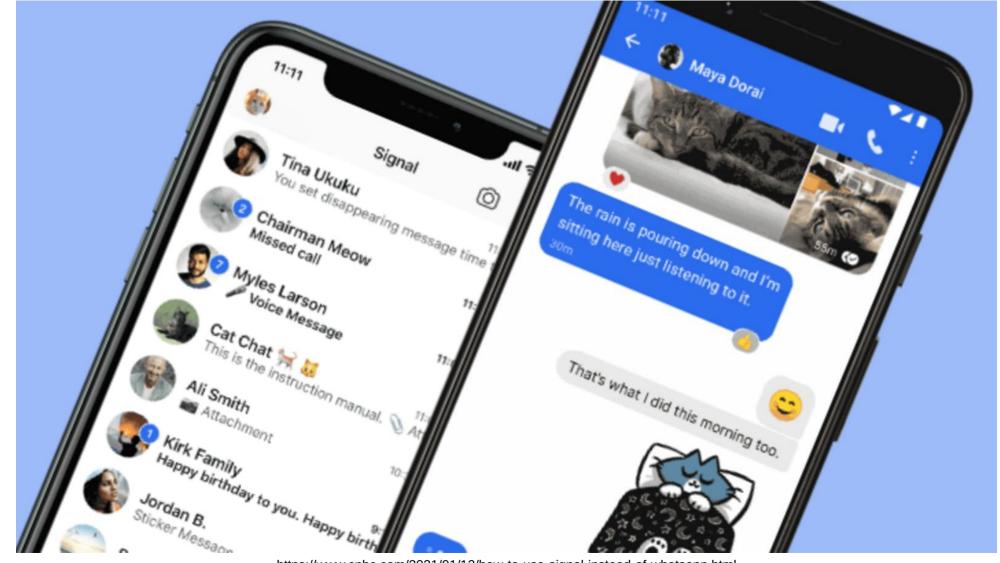
Forward secrecy


 If Alice or Bob's key is compromised, past messages cannot be decrypted by the adversary

Ratchet in sailing...

https://www.westmarine.com/harken-snubbair-ratcheting-drum-19471861.html

Forward Secrecy (ratchet)


https://signal.org/docs/specifications/doubleratchet/

Future Secrecy

- *Future* secrecy is not the same as *forward* secrecy, and is in fact sometimes called *backward* secrecy
- If a private key is compromised, the attacker needs to intercept every message thereafter or else the crypto will "self heal"
- We get this for free because of the Diffie-Hellman key exchange every time we ratchet in OTR

Signal

- Multiple devices, some or all can be offline for long periods of time
- Group messages

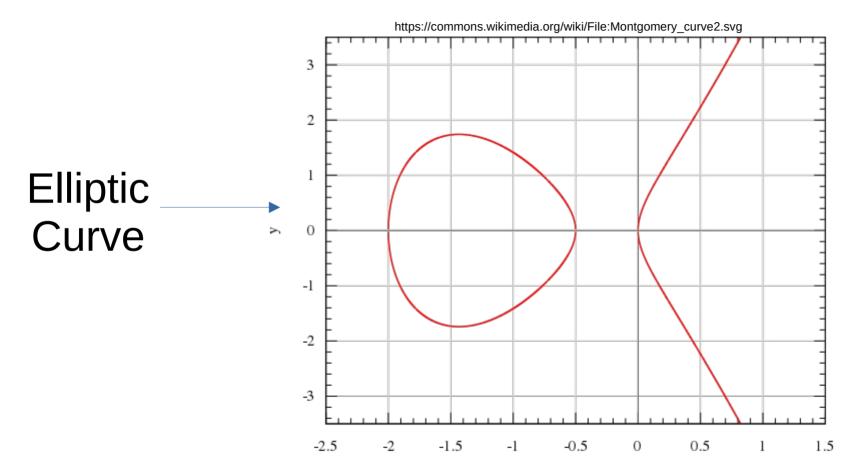
https://www.cnbc.com/2021/01/12/how-to-use-signal-instead-of-whatsapp.html

Typical authentication

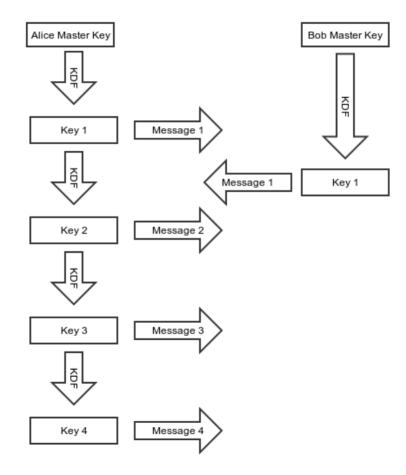
X

Verify Safety Number

30030 73005 65874 38555 03814 88358 32278 06178 39218

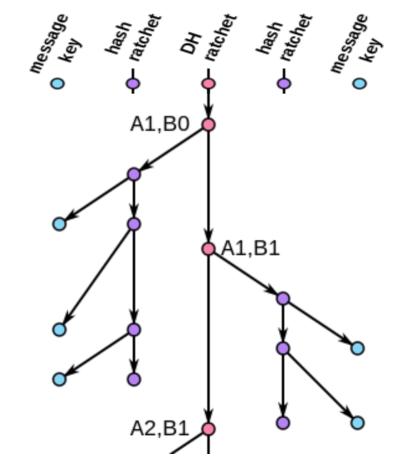

To verify the security of your end-to-end encryption with Tony Cheeseburger (), compare the numbers above with their device.

You have not verified your safety number with Tony Cheeseburger ·


Mark as verified

Signal encryption basics

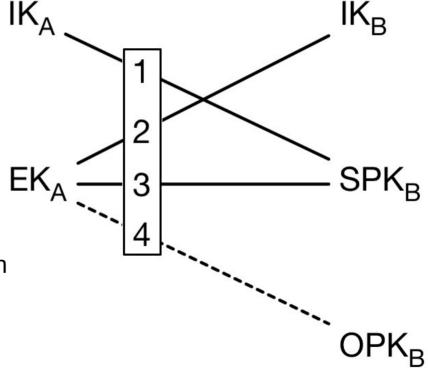
- AES-256 in CBC mode
 - Why not a stream cipher?
- HMAC-256 with SHA-256 (SHA-2)
 - Why not Gallois Counter Mode (which is SHA-3)?
- Curve25519 for key exchange and signatures


Silent Circle SCIMP ratchet

Tradeoffs

- Both have forward secrecy, but SCIMP's is better
 - In synchronous case, can ratchet and delete old key right away if Bob acknowledges it and ratchets, too
- OTR ratchet not great for multiple devices, devices that go offline
- SCIMP ratchet leaves key material around for a long time if messages are lost or out of order
- OTR ratchet "self heals", *i.e.*, future/backward sececy

Double Ratchet


https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm

X3DH

IK = Identity Key EK = Ephemeral Key SPK = Signed Pre-Key OPK = One-Time Pre-Key

```
SK = KDF(DH1 || DH2 || DH3 || DH4)
```

Alice's first message encrypts the two on the left, authentication for Bob's SPK comes from the signature.

Deniability?

Two key differences with Signal: -Federated -No deniability

Messaging Layer Security (MLS) is an IETF working group building a modern, efficient, secure group messaging protocol.

View My GitHub Profile

Resources

- https://signal.org/blog/advanced-ratcheting/
- https://en.wikipedia.org/wiki/Off-the-Record_Messaging
- https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm
- https://signal.org/docs/specifications/doubleratchet/
- https://signal.org/docs/specifications/x3dh/
- https://www.youtube.com/watch?v=7WnwSovjYMs
- https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013%E2%80%93present)
- https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013%E2%80%93present)