Overview of post-quantum cryptography CSE 539
jedimaestro@asu.edu

What we need

- Symmetric
- Encryption
- Authentication
- Secure hashes
- Others?
- Asymmetric
- Encryption
- Non-repudiability (signatures)
- Key exchange
- Others? (e.g., homomorphic)

Grover's algorithm

Grover diffusion operator

Repeat $\approx \frac{\pi}{4} \sqrt{N}$ times
https://en.wikipedia.org/wiki/Grover\'s_algorithm\#/media/File:Grover's_algorithm_circuit.svg

Symmetric crypto

- Double the key size
- $\operatorname{sqrt}\left(2^{2 n}\right)=2^{n}$
- $\operatorname{sqrt}\left(2^{256}\right)=2^{128}$

Asymmetric Crypto

- Quantum computers seem to be good at the same kinds of things that make good trapdoor functions for asymmetric crypto (factorization, discrete log, etc.)
- But not everything
- Older schemes (e.g., Merkle's signature scheme)
- Newer schemes (e.g., lattice-based)

Deutsh-Jozsa algorithm

https://en.wikipedia.org/wiki/Deutsch\�\�\�Jozsa_algorithm\#/media/File:Deutsch-Jozsa-algorithm-quantum-circuit.png

RSA, DH, ECDH, DSA, etc. all broken. Need something else instead...

Wiretap channel

https://www.sciencedirect.com/science/article/pii/S1389128616302146

Quantum Key Distribution

Themes

- In schemes based on information theory or physics the eavesdropper has some noise or uncertainty the receiver doesn't have
- We'll see this in post-quantum crypto (e.g., learning with errors)
- Quantum computers aren't necessarily faster at everything
- There's usually a "trick at the end" where all the quantum information gets destroyed but the classical information measured still means something

Lamport signature (1979)

- How to sign a 256-bit message digest...
- Generate 512 random 256-bit integers (256 pairs of them)
- Private key
- For all 512 generate corresponding hash
- Public key (single use)
- When you want to sign something, reveal one unhashed private version per pair for corresponding to the bit being 0 or 1 (i.e., the first of the pair for 0 , the other for 1)
- 64 Kbits

> https://en.wikipedia.org/wiki/Lamport_signature

Watch these three videos...

- https://www.youtube.com/watch?v=_C5dkUiiQnw
- https://www.youtube.com/watch?v=QDdOoYdb748
- https://www.youtube.com/watch?v=K026C5YaB3A

