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RSA vs. DH

● Diffie-Hellman (1976)
● Key exchange
● Both sides get to choose something random

● RSA (1977)
● Encryption
● Signatures



  



  



  

RSA

● Security is based on the hardness of integer 
factorization



  

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are 

relatively prime to n
● totient(n) = lcm(p – 1, q – 1) = 780

● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1



  

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Using RSA for key exchange or encryption is often a red flag, 

more commonly used for signatures



  



  



  

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”



  



  

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function



  



  



  



  



  



  



  



  

An “exercise”

● You don’t have to turn this in
● Go to a few of your favorite websites
● If they don’t support HTTPS, say so in Canvas

● They really should support HTTPS, I’d be interested to know 
major websites that still don’t

● If they do support HTTPS, check the public key’s exponent 
using your browser’s ability to inspect a TLS cert

● Is it 0x10001?  (65537 in decimal)



  

Takeaways so far

● RSA let’s you do encryption, signatures
● Even textbook RSA is not trivial to implement



  



  

= about 665 bits



  



  



  



  



  

More takeaways

● RSA depends on “we’ve tried to crack it for a long time, but couldn’t”, as 
does DES, AES, etc.

● Textbook RSA is not good enough
● Some differences with Diffie-Hellman

● Threat model
● RSA is tricky to implement in a secure way
● Composite number
● Who gets to contribute randomness?

● Similarities?
● Both are broken by quantum computers



  

RSA in real cryptosystems

● What we just learned, and read about in the paper, is 
called “Textbook RSA”

● Not secure and should not be used (padding is strictly 
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels (covered in a previous lecture)



  

Side notes

● GCHQ claims to have invented RSA in 1973, and 
declassified this info in 1997

● In my own research (looking for amateurish crypto in 
Android apps) using RSA for key distribution is often a 
red flag

● An authenticated version of Diffie-Hellman is better, most 
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)



  



  



  

WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf
● The other issues in that paper and previous papers have 

been fixed, but they still appear to be using textbook 
RSA

https://arxiv.org/pdf/1802.03367.pdf


  

Next lecture

● WUP request attack on RSA in more detail
● Optimal Assymetric Encryption Padding (OAEP)

● To prevent padding oracle attacks on RSA
● Random oracle model
● Formalizing attacks

● Ciphertext only, known plaintext, chosen plaintext
● Chosen ciphertext
● CPA, CPA2, CCA, CCA2 (2 = adaptive)
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