
 1

RSA

CSE 539
jedimaestro@asu.edu

 2

RSA vs. DH

● Diffie-Hellman (1976)
● Key exchange
● Both sides get to choose something random

● RSA (1977)
● Encryption
● Signatures

RSA

● Security is based on the hardness of integer
factorization

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are

relatively prime to n
● totient(n) = lcm(p – 1, q – 1) = 780

● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Using RSA for key exchange or encryption is often a red flag,

more commonly used for signatures

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function

An “exercise”

● You don’t have to turn this in
● Go to a few of your favorite websites
● If they don’t support HTTPS, say so in Canvas

● They really should support HTTPS, I’d be interested to know
major websites that still don’t

● If they do support HTTPS, check the public key’s exponent
using your browser’s ability to inspect a TLS cert

● Is it 0x10001? (65537 in decimal)

Takeaways so far

● RSA let’s you do encryption, signatures
● Even textbook RSA is not trivial to implement

= about 665 bits

More takeaways

● RSA depends on “we’ve tried to crack it for a long time, but couldn’t”, as
does DES, AES, etc.

● Textbook RSA is not good enough
● Some differences with Diffie-Hellman

● Threat model
● RSA is tricky to implement in a secure way
● Composite number
● Who gets to contribute randomness?

● Similarities?
● Both are broken by quantum computers

RSA in real cryptosystems

● What we just learned, and read about in the paper, is
called “Textbook RSA”

● Not secure and should not be used (padding is strictly
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels (covered in a previous lecture)

Side notes

● GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

● In my own research (looking for amateurish crypto in
Android apps) using RSA for key distribution is often a
red flag

● An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)

WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf
● The other issues in that paper and previous papers have

been fixed, but they still appear to be using textbook
RSA

https://arxiv.org/pdf/1802.03367.pdf

Next lecture

● WUP request attack on RSA in more detail
● Optimal Assymetric Encryption Padding (OAEP)

● To prevent padding oracle attacks on RSA
● Random oracle model
● Formalizing attacks

● Ciphertext only, known plaintext, chosen plaintext
● Chosen ciphertext
● CPA, CPA2, CCA, CCA2 (2 = adaptive)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

