RSA

CSE 539
jedimaestro@asu.edu

RSA vs. DH

* Diffie-Hellman (1976)

« Key exchange
* Both sides get to choose something random
« RSA (1977)

* Encryption
« Signatures

A L L LT T e e ey

RSA

« Security is based on the hardness of integer
factorization

n=pq
p and g are primes, suppose p =61, q =53
n = 3233

Euler's totient counts the positive integers up to n that are
relatively prime to n

totient(in) =lcm(p-1,g-1) =780
52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
60,120,180,240,300,360,420,480,540,600,660,720,780

Choose 1 < e <780 coprime to 780, e.g., e = 17
d is the modular multiplicative inverse of e, d = 413
413 *17 mod 780 =1

Public key is (n = 3233, e =17)

Private key is (n = 3233, d = 413)

Encryption: c(m = 65) = 65'" mod 3233 = 2790
Decryption: m = 2790*° mod 3233 = 65

Could also do...

« Signature: s = 100**®* mod 3233 = 1391
« Verification: 100 = 1391' mod 3233

Fast modular exponentiation is the trick

Using RSA for key exchange or encryption is often a red flag,
more commonly used for signatures

jedi@routes6: ~

:~%$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)

[GCC 9.3.0] on 1linux
Type "help", "copyright", "credits" or "license" fTor more information.

>>> for i in range (52, 781, 52):
for j in range (60, 781, 60):
if (i == j):
print(i)

print((413 * 17) % 780)

print(pow(2790, 413, 3233))

print(pow(65, 17, 3233))
2790
>>> print(pow(100, 413, 3233))

1391
>>> print(pow(1391, 17, 3233))

jedi@routes6: ~

>>> print(pow(2790, 413, 3233))
65

>>> print(pow(65, 17, 3233))
2790

>>> print(pow(100, 413, 3233))
1391

>>> print(pow(1391, 17, 3233))
100

>>> print(pow(7, 17, 3233))
2369

>>> print((2369*2790) % 3233)
1258
print(pow(1258, 413, 3233))

print(7*65)

print("{0:b}".format(78913))
1001101000100600001
>>> print("{0:b}".format(78913*32))
1001101000100000100000
>>> print("{0:b}".format(78913<<5))
1001101000100000100000
—_— |

“Relatively prime”

9 is not prime, 9 = 32

13 is prime

10 is not prime, 10 = 5*2

9 and 10 are relatively prime, gcd(9,10) = 1

5 and 10 are not relatively prime, gcd(5,10) =5
Also called “coprime”

M?*™ =1 (mod n) . (3)

Here ¢(n) is the Euler totient function giving number of positive integers less than n
which are relatively prime to n. For prime numbers p,

o(p)=p—1.

In our case, we have by elementary properties of the totient function [7]:

o(n) = o(p)-9(q)
= (p—1)-(¢g—1) (4)
n—((p+q +1.

Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

Oo———0

Euler's totient function

* https://en.wikipedia.org/wiki/Euler%27s_totient function

(fasi]faef]]

~\
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively

Y

C prime to n. It is written using the Greek letter phi as .:p(n) or gé(n), and may also be called Euler's phi function.

i)

(Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then
@(mn) = (p[m}(p(n].[41[5] This function gives the order of the multiplicative group of integers modulo n (the group ol
O— units of the ring Z/RZ}.[E’] It is also used for defining the RSA encryption system.

S—

O~

(8]

:O—O:
On®,

M\ M
Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

e-d=1 (mod ¢(n)). (5)
0O
“o—o-
OO
D(E(M)) = (E(M))*=(M%* (modn)= M (mod n
E(D(M)) = (D(M)) = (M%* (modn)=M* (mod n)
and
Med = MF9MWHL (mod n) (for some integer k).
OO
O0—O

O0—0O._
From (3) we see that for all M such that p does not divide M

MP~1 =1 (mod p)
and since (p — 1) divides ¢(n)
M*ESTL = A (mod p).

This is trivially true when M = 0 (mod p), so that this equality actually holds for
all M. Arguing similarly for ¢ yields

MFEMF = A (mod q) .
Together these last two equations imply that for all M,
Mt = MFT = M (mod n).

This implies (1) and (2) for all M,;0 < M < n. Therefore £ and D are inverse
permutations. (We thank Rich Schroeppel for suggesting the above improved version
of the authors’ previous proof.)

Oo———0

o—=0

MM
Computing M*¢ (mod n) requires at most 2 - log,(e) multiplications and 2 - log,(e)

divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let epep_1...e1e9 be the binary representation of e.
Step 2. Set the variable C' to 1.
Step 3. Repeat steps 3a and 3b for:e =k, k—1,...,0:
Step 3a. Set C' to the remainder of C? when divided by n.
Step 3b. If ¢; = 1, then set C' to the remainder of C'- M when divided by n.
Step 4. Halt. Now C is the encrypted form of M.

This procedure is called “exponentiation by repeated squaring and multiplication.”
This procedure is half as good as the best; more efficient procedures are known.
Knuth [3] studies this problem in detail.

OO

Oo———0

Each user must (privately) choose two large random numbers p and ¢ to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p - ¢. (Remember that n, but not
p or ¢, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and ¢, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem |[7], about
(In10*Y) /2 = 115 numbers will be tested before a prime is found.

\ A

MM
To test a large number b for primality we recommend the elegant “probabilistic”

algorithm due to Solovay and Strassen [12]. It picks a random number a from a
uniform distribution on {1,...,b— 1}, and tests whether

ged(a,b) = 1 and J(a,b) = a® /2 (mod b), (6)

To gain additional protection against sophisticated factoring algorithms, p and ¢
should differ in length by a few digits, both (p — 1) and (¢ — 1) should contain large
prime factors, and ged(p — 1, — 1) should be small. The latter condition is easily
checked.

ensuring that (u — 1) also has a large prime factor.
A\

:O—O:
On®,

C How to Choose d

It is very easy to choose a number d which is relatively prime to ¢(n). For example,
any prime number greater than max(p,q) will do. It is important that d should be
chosen from a large enough set so that a cryptanalyst cannot find it by direct search.

D How to Compute ¢ from d and ¢(n)

o0—0 . .
OEO Fuclid’s algorithm

If e turns out to be less than log,(n), start over by choosing another value of d.
This guarantees that every encrypted message (except M = 0 or M = 1) undergoes
some “wrap-around” (reduction modulo n) .

OO

Oo———0

An “exercise”

You don’t have to turn this in
Go to a few of your favorite websites

If they don’t support HTTPS, say so in Canvas

They really should support HTTPS, I'd be interested to know
major websites that still don’t

If they do support HTTPS, check the public key’s exponent
using your browser’s ability to inspect a TLS cert

Is it 0x10001? (65537 in decimal)

Takeaways so far

 RSA let’s you do encryption, signatures
* Even textbook RSA is not trivial to implement

:O—O:
On®,

OO The era of “electronic mail” [10] may soon be upon us;

OO0

:O—O:
Oo—=O0

encryption keys. (We assume that the intruder cannot modify or insert messages into
the channel.) Ralph Merkle has developed another solution [5] to this problem.

(A public-key cryptosystem can be used to “bootstrap” into a standard encryption
scheme such as the NBS method. Once secure communications have been established,
the first message transmitted can be a key to use in the NBS scheme to encode all

¢ following messages. This may be desirable if encryption with our method is slower
than with the standard scheme. (The NBS scheme is probably somewhat faster if
special-purpose hardware encryption devices are used; our scheme may be faster on
a general-purpose computer since multiprecision arithmetic operations are simpler to
implement than complicated bit manipulations.)

0,0

OO

Oo———0

200-digit message M

logz[lozm) = about 665 bits

P N o N

Since no techniques exist to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break it. The NBS standard
was “certified” this way; seventeen man-years at IBM were spent fruitlessly trying to
break that scheme. Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure. (Actually there is some controversy

concerning the security of the NBS method [2].)

:O—O:
On®,

0,0
How can n be factored using ¢(n)? First, (p + ¢) is obtained from n and ¢(n) =

n—(p+q)+1. Then (p— q) is the square root of (p+ q)? — 4n. Finally, ¢ is half the
difference of (p + ¢) and (p — q).

Therefore breaking our system by computing ¢(n) is no easier than breaking our

system by factoring n. (SHSNRASHbECOMpOSIEENA (N SNAIoCoMpiie
if n is prime.)

OO

~\ N\

A knowledge of d enables n to be factored as follows. Once a cryptanalyst knows d
he can calculate e - d — 1, which is a multiple of ¢(n). Miller [6] has shown that n can
be factored using any multiple of ¢(n). Therefore if n is large a cryptanalyst should
not be able to determine d any easier than he can factor n.

~0—O"
0,0

OO

Oo———0

:O—O:
On®,

OO
/'\O-O/\
D Computing D in Some Other Way

Although this problem of “computing e-th roots modulo n without factoring n” is
not a well-known difficult problem like factoring, we feel reasonably confident that it
is computationally intractable. It may be possible to prove that any general method
of breaking our scheme yields an efficient factoring algorithm. This would establish
that any way of breaking our scheme must be as difficult as factoring. We have not
been able to prove this conjecture, however.

Our method should be certified by having the above conjecture of intractability
withstand a concerted attempt to disprove it. The reader is challenged to find a way
to “break” our method.

More takeaways

RSA depends on “we’ve tried to crack it for a long time, but couldn’t”, as
does DES, AES, etc.

Textbook RSA is not good enough

Some differences with Diffie-Hellman

* Threat model
RSA is tricky to implement in a secure way
Composite number
* Who gets to contribute randomness?
Similarities?
Both are broken by quantum computers

RSA in real cryptosystems

* What we just learned, and read about in the paper, Is
called “Textbook RSA”

* Not secure and should not be used (padding is strictly
necessary in real schemes)

« Padding oracle attacks (same idea as for CBC)
* Side channels (covered in a previous lecture)

Side notes

GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

In my own research (looking for amateurish crypto in
Android apps) using RSA for key distribution is often a
red flag

« An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)

“o—o- Let C be the RSA encryption of 128-bit AES key k
o0 with RSA public key (n, e). Thus, we have

o C =k (mod n)
95—~ Now let Cj, be the RSA encryption of the AES key
0—0 ky = 2%k
o0 lLe., k bitshifted to the left by b bits. Thus, we have

Cb — kbe (IIlOd n)

Cyr = kp©

(mod n)

0
Cb

= mo d ?’1)
2EE d n) (mo
b

od n)
od n)(2% mod
= (k* m

- kezbe
: (zbk)e
— kbe

(mod n)

(mod n)

(mod n)

WUP requests

* Full attack is at:

* The other issues in that paper and previous papers have
been fixed, but they still appear to be using textbook
RSA

https://arxiv.org/pdf/1802.03367.pdf

Next lecture

WUP request attack on RSA in more detalil
Optimal Assymetric Encryption Padding (OAEP)
« To prevent padding oracle attacks on RSA
Random oracle model

Formalizing attacks

« Ciphertext only, known plaintext, chosen plaintext
* Chosen ciphertext
« CPA, CPA2, CCA, CCA2 (2 = adaptive)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

