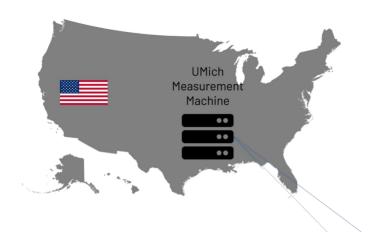

## Syllabus...


# Discussion of the ConceptDoppler paper...

### Preview: OSI model

- Layer 1: Physical
- Layer 2: Link
- Layer 3: Network (think IP routing)
- Layer 4: Transport (TCP, UDP, etc.)
- Layers 5 and 6: Session and Presentation
- Layer 7: Application (e.g., HTTP)



https://commons.wikimedia.org/wiki/File:Firewall.png

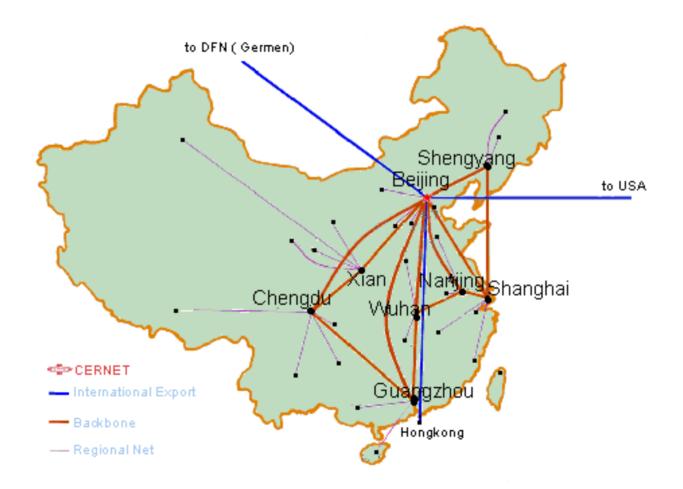


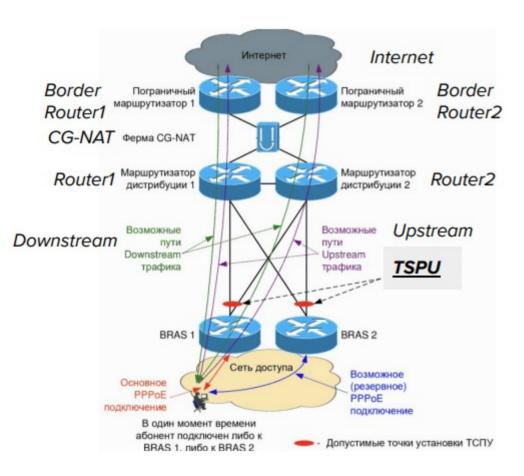
Replay the traffic recording between Russia VPs and the UMich Measurement Machine

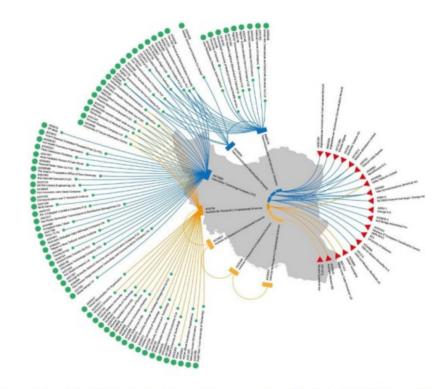
https://censoredplanet.org/throttling






Record Traffic between an un-throttled machine and Twitter Server



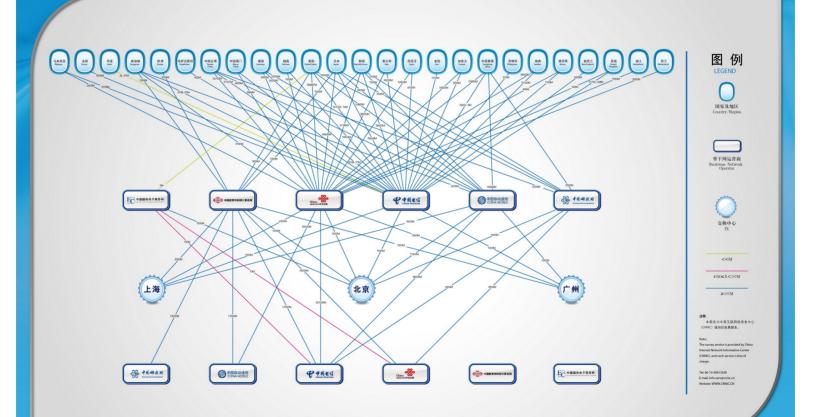


Vantage Point (Throttled) Vantage Point (Throttled)



End User (Un-throttled)








Reproduced and cropped from https://www.article19.org/ttn-iran-november-shutdown/



#### 中国互联网络连接带宽图 Internet Connection Map of China

监制单位: 工业和信息化部电信管理局 Supervised by: Telecommunications Administration Bureau,MIIT 数据统计数计显现 2011年12月3日



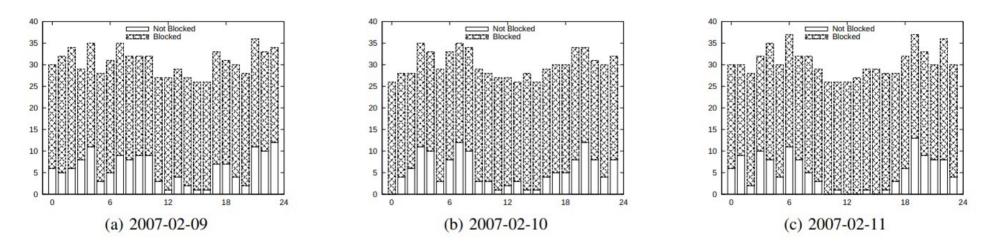



Figure 2: Filtering Statistics For each day from 00:00 to 24:00.

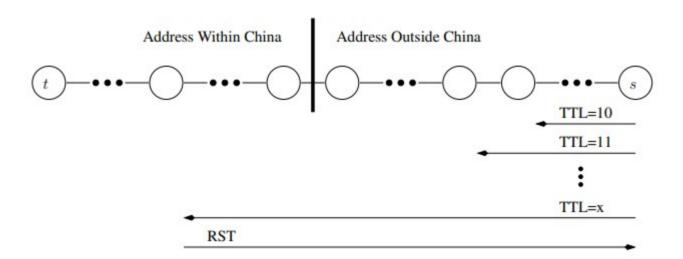
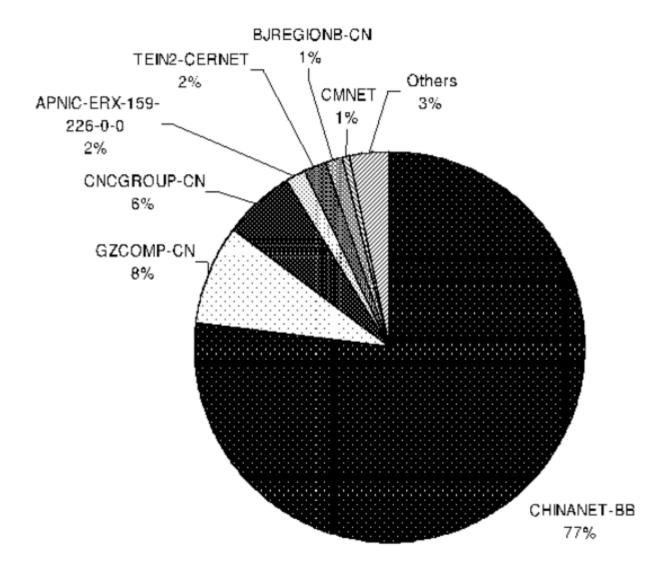
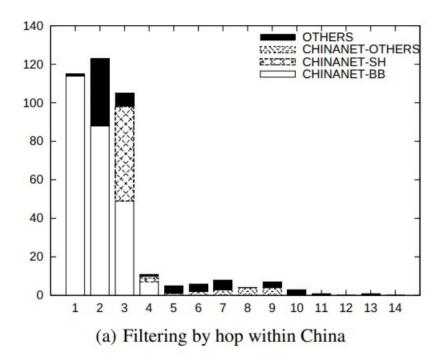
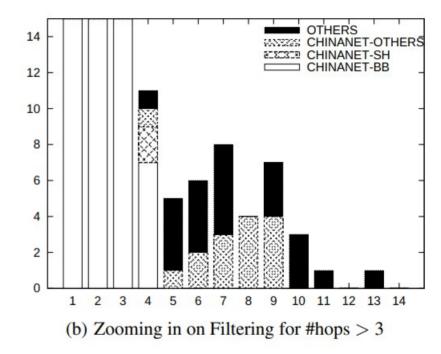
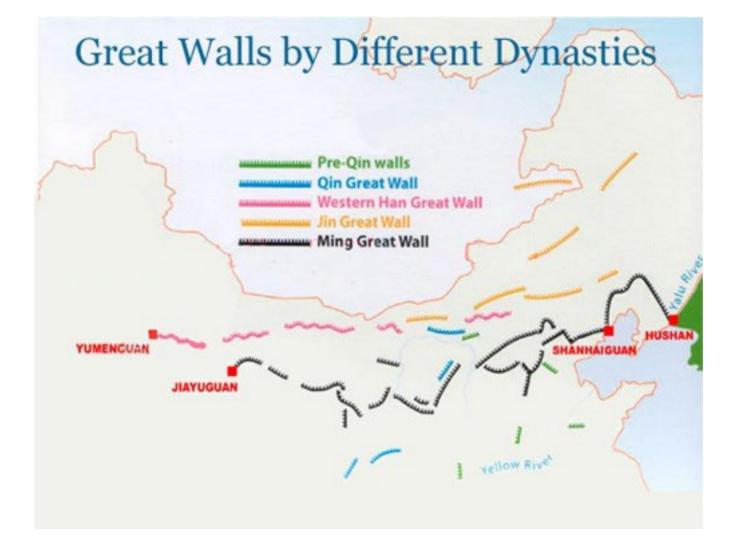
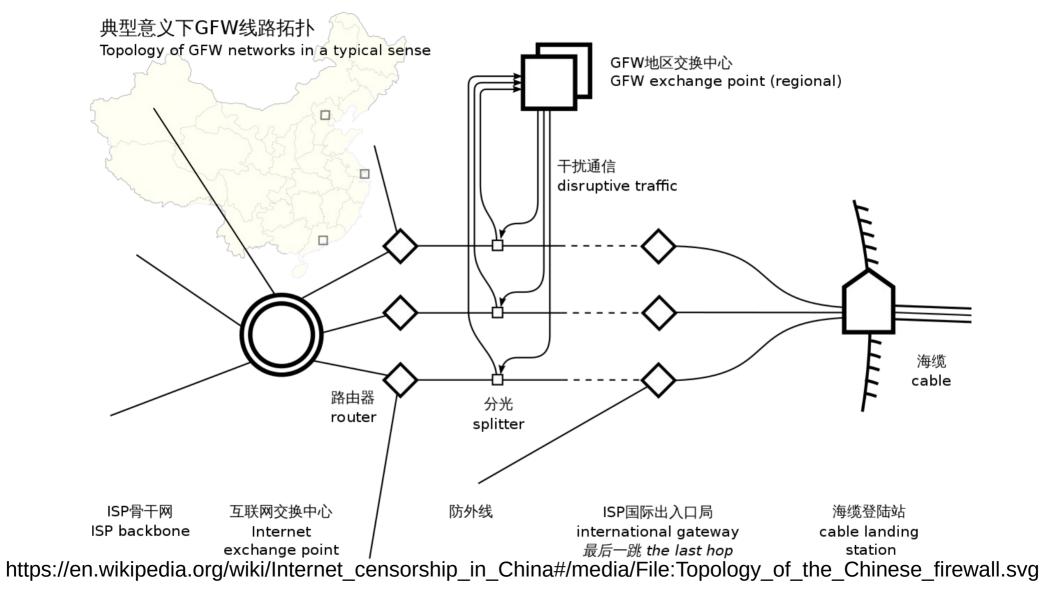





Figure 4: GFC router discovery using TTLs.







Figure 5: Where Filtering Occurs.

## Things to think about...

- What assumptions did the authors make that maybe they shouldn't have?
- What if they measured from many places in China instead of to many places in China?
- Other problems with methodology?
- Statefulness of TCP, other evasion possibilities



https://www.nouahsark.com/img/great\_wall/maps/great-wall-of-china-history-map.php



#### Passive and Active Measurements (PAM) 2011...

#### Internet Censorship in China: Where Does the Filtering Occur?

Xueyang Xu, Z. Morley Mao, and J. Alex Halderman

Department of Computer Science and Engineering, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109 {xueyang,zmao,jhalderm}@umich.edu http://www.cse.umich.edu

Abstract. China filters Internet traffic in and out of the country. In order to circumvent the firewall, it is helpful to know where the filtering occurs. In this work, we explore the AS-level topology of China's network, and probe the firewall to find the locations of filtering devices. We find that even though most filtering occurs in border ASes, choke points also exist in many provincial networks. The result suggests that two major ISPs in China have different approaches placing filtering devices.

Keywords: Censorship, topology, network measurement.

Table 1. Chinese ISP with most number of unique peerings to foreign AS

| ISP      | AS Numbers                          | Peerings   |
|----------|-------------------------------------|------------|
| CHINANET | 4134, 4809, 4812, 23724, 17638      | 62 (46.6%) |
| CNCGROUP | 4837, 9929, 17621, 4808             | 23 (17.3%) |
| TEIN     | 24489, 24490                        | 8 (6.0%)   |
| CNNIC    | 37958, 24151, 45096                 | 8 (6.0%)   |
| CERNET   | 4538, 4789                          | 9 (6.8%)   |
| Other    | 9808, 9394, 4847, 7497, 9298, 23911 |            |

Table 3. Locations of filtering devices in AS4134

| Province     | # Devices | Percentage |
|--------------|-----------|------------|
| Backbone     | 49        | 13.10%     |
| Guangdong    | 84        | 22.46%     |
| Fujian       | 29        | 7.75%      |
| Hunan        | 28        | 7.49%      |
| Hubei        | 24        | 6.42%      |
| Sichuan      | 22        | 5.88%      |
| Yunnan       | 21        | 5.61%      |
| Guangxi      | 19        | 5.08%      |
| Jiangsu      | 19        | 5.08%      |
| Zhejiang     | 15        | 4.01%      |
| Guizhou      | 14        | 3.74%      |
| Jiangxi      | 14        | 3.74%      |
| Hainan       | 11        | 2.94%      |
| Chongqing    | 10        | 2.67%      |
| Anhui        | 6         | 1.60%      |
| Unidentified | 6         | 1.60%      |
| Xinjiang     | 2         | 0.53%      |
| Tibet        | 1         | 0.27%      |

Roya Ensafi\*, Philipp Winter, Abdullah Mueen, and Jedidiah R. Crandall

# Analyzing the Great Firewall of China Over Space and Time

Abstract: A nation-scale firewall, colloquially referred to as the "Great Firewall of China," implements many different types of censorship and content filtering to control China's Internet traffic. Past work has shown that the firewall occasionally fails. In other words, sometimes clients in China are able to reach blacklisted servers outside of China. This phenomenon has not yet been characterized because it is infeasible to find a large and geographically diverse set of clients in China from which to test connectivity.






Fig. 3. The geographic distribution of all tested Tor relays (shown as onions) and of our global IPID clients in China (shown as red marks). Note that outside of Xinjiang the west of China has very little Internet penetration, which is why we have few data points in this region and the distribution is biased towards the eastern parts of China. (Map data © 2014 Google, INEGI)

| CI | ient Server | S 	o C (%)      | None (%)       | C 	o S (%)    | Error (%)      |
|----|-------------|-----------------|----------------|---------------|----------------|
| CN | Tor-Relay   | 116,460 (81.52) | 555 (0.39)     | 786 (0.55)    | 25,061 (17.54) |
| CN | Tor-Dir     | 8,922 (64.91)   | 31 (0.23)      | 2,696 (19.61) | 2,097 (15.25)  |
| CN | Web         | 306 (1.23)      | 15,663 (62.95) | 2,688 (10.80) | 6,226 (25.02)  |
| EU | Tor-Relay   | 18 (0.20)       | 8,589 (96.79)  | 22 (0.25)     | 245 (2.76)     |
| EU | Tor-Dir     | 2 (0.25)        | 776 (96.76)    | 0 (0.00)      | 24 (2.99)      |
| EU | Web         | 19 (1.23)       | 1,333 (86.28)  | 95 (6.15)     | 98 (6.34)      |
| NA | Tor—Relay   | 45 (0.39)       | 11,022 (94.48) | 33 (0.28)     | 566 (4.85)     |
| NA | Tor-Dir     | 4 (0.37)        | 1,025 (94.73)  | 3 (0.28)      | 50 (4.62)      |
| NA | Web         | 32 (1.52)       | 1,794 (85.06)  | 98 (4.65)     | 185 (8.77)     |

| #   | Network name (from whois information)        |
|-----|----------------------------------------------|
| 503 | CERNET                                       |
| 81  | CNC Group CHINA169 Shanxi Province Network   |
| 78  | China Unicom Henan province network          |
| 58  | Anhui Informationg [sic] Center              |
| 41  | CHINANET                                     |
| 37  | CNC Group CHINA169 Xinjiang Province Network |
| 35  | CNC Group CHINA169 Neimeng Province Network  |
| 31  | China Unicom Heilongjiang Province Network   |
| 25  | China Unicom Shandong Province Network       |
| 22  | China Unicom Shanxi Province Network         |
| 20  | China Mobile                                 |
| 17  | China Unicom Hebei province network          |
| 14  | China Unicom Liaoning province network       |
| 13  | China Unicom Shandong province network       |
| 13  | China unicom InnerMongolia province network  |
| 10  | CHINANET ningxia province network            |





■ ceicdata.com/en/china/internet-international-outlet-bandwidth

### **Bandwidth**

#### Internet Service: International Outlet Bandwidth(Mbps)

1997 - 2020 | SEMIANNUALLY | UNIT TH | CHINA INTERNET NETWORK INFORMATION CENTER

CN: Internet Service: International Outlet Bandwidth(Mbps) data was reported at 11,511.397 Unit th in Dec 2020. This records an increase from the previous number of 8,827.751 Unit th for Dec 2019. CN: Internet Service: International Outlet Bandwidth(Mbps) data is updated semiannually, averaging 640.287 Unit th from Dec 1997 to Dec 2020, with 45 observations. The data reached an all-time high of 11,511.397 Unit th in Dec 2020 and a record low of 0.241 Unit th in Jun 1999. CN: Internet Service: International Outlet Bandwidth(Mbps) data remains active status in CEIC and is reported by China Internet Network Information Center. The data is categorized under China Premium Database's Information and Communication Sector – Table CN.ICE: Internet: International Outlet Bandwidth.

| LAST                     | FREQUENCY    | RANGE               |
|--------------------------|--------------|---------------------|
| ▲ 11,511.397<br>Dec 2020 | semiannually | Dec 1997 - Dec 2020 |