

# Symmetric Cryptography (Through the 1980s or so...)

CSE 548 Spring 2024 jedimaestro@asu.edu



https://www.theatlantic.com/technology/archive/2011/12/the-great-wireless-hack-of-1903/250665/



Gqrx 2.15.8 - hackrf=9284c3

- 😣

#### File Tools View Help

#### 🔤 🛲 🔜 📑 📟 🌉 🛠 💠 🗌







## Basics of crypto...

- Symmetric encryption
  - Assumes two parties wishing to communicate already have a shared secret
- Asymmetric encryption
  - Makes different assumptions (*e.g.*, that everybody knows the public key or that the eavesdropper is passive)
  - Quantum computers break current algorithms that are used in practice
- Secure hash functions and message authentication



#### Symmetric Crypto

- Confidentiality
- Integrity
- Availability
- Authentication
- Non-repudiation
- A way to distribute the shared secret keys





## Terminology

- Plaintext before encryption, easy to read
- Ciphertext after encryption, hopefully indecipherable without the key
- Key the shared secret, typically just bits that were generated with a high entropy process



#### Review on your own...

- Caesar Cipher
- Vigenere Cipher and related attacks



#### Modern symmetric crypto

- Mostly:
  - Substitution
  - Permutation
  - XOR



## Substitution HELLO WORLD TNWWX DXPWE



#### Permutation

| ABCD | ABDC | ACBD | ACDB | ADBC | ADCB |
|------|------|------|------|------|------|
| BACD | BADC | BCAD | BCDA | BDAC | BDCA |
| CABD | CADB | CBAD | CBDA | CDAB | CDBA |
| DABC | DACB | DBAC | DBCA | DCAB | DCBA |



#### Bitwise XOR

# $00101010_{b}$ $\oplus 10000110_{b}$ $= 10101100_{b}$



#### 2000+ years of history...





#### Symmetric encryption over time

- Handwritten notes, *etc.* for centuries
  - Typically the algorithm was secret
- 1883 ... Kerckhoff's rules
  - Now we know the key should be the only secret
- 1975 ... DES
  - Efficient in hardware, not in software
- 2001 ... AES
  - Efficient in software, and lots of different kinds of hardware



#### William and Elizabeth Friedman

- Met while analyzing Shakespeare ciphers at Riverbank Laboratories ("William Friedman wrote Shakespeare's plays")
- Elizabeth solved ciphers of alcohol and drug smugglers, then German ambassadors in South America (three enigma machines)
- William led a team that solved PURPLE, conceived CryptoAG scheme







https://en.wikipedia.org/wiki/Type\_B\_Cipher\_Machine#/media/File:Purple\_cipher\_machine\_analog\_bw\_photo\_NCM.jpg





https://en.wikipedia.org/wiki/Enigma\_machine#/media/File:Enigma\_(crittografia)\_-\_Museo\_scienza\_e\_tecnologia\_Milano.jpg



#### Zodiac cipher

A D P / Z / U B D X O R X 9 X X B JGYFOAHPOKI YB MJYAUINAOTLNG B S Ø / 1 PORAU XALMZ 9 F TOT R H S O D + G 00 LI 0 PG 8 0 B LO/PEBOXPEHMUAR K R OGIOWOI K R + T T O N O B E U H X F D OVWI + 1 LOJAROH AD TXD / ED / R R RULDLONVEKHTE A Z Z O A L M J N A O Z O P + u P BVW\+VTLOP K A A T AOENFLR IM 6 - SDE/AZ D Z BV X P W P D F E A ) + AAA B TORUD+DOYDDASDW ZJGYKEDTYAADELLD V FBXAOXADONALIXO HI DED E E O 3 O P O R X Q F Z G J ZOJTLØDAJI+8BP@WO KINXONHJOOLMAKXJV

Image from wikia



## Bitwise XOR as a cipher itself

- Typically used by malware, 8 or 32 bits
  - WEP attack uses these properties
- (B xor K) xor K = B
- (A xor K) xor (B xor K) = A xor B
- (0 xor K) = K
- (K xor K) = 0
- Frequency analysis or brute force



#### One-time pad

- *E.g.*, an XOR cipher or Caesar cipher where the key has good randomness and is as long as the plaintext
  - And never gets reused
- Most codes made by the NSA through the 1980s were one-time pads
  - What if it's not practical to share enough key material beforehand, *e.g.*, on the Internet?



#### 1977 - DES (16 rounds, 64-bit blocks, 56-bit key)







#### **DES S-boxes**

- 6 bits becomes 4 bits
- Somewhat arbitrary
  - IBM proposed some, NSA replaced with others

|                  | מס׳ עמודה          |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
|------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
| שורה             | 0                  | 1                  | 2                   | 3                  | 4                  | 5                   | 6                  | 7                   | 8                   | 9                   | 10                 | 11                  | 12                 | 13                 | 14                 | 15                 |
|                  |                    | S <sub>1</sub>     |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 14<br>0<br>4<br>15 | 4<br>15<br>1<br>12 | 13<br>7<br>14<br>8  | 1<br>3<br>2        | 2<br>14<br>13<br>4 | 15<br>2<br>6<br>9   | 11<br>13<br>2<br>1 | 8<br>1<br>11<br>7   | 3<br>10<br>15<br>5  | 10<br>6<br>12<br>11 | 6<br>12<br>9<br>3  | 12<br>11<br>7<br>14 | 5<br>9<br>13<br>10 | 9<br>5<br>10<br>0  | 0<br>3<br>5<br>6   | 7<br>8<br>0<br>13  |
|                  | S <sub>2</sub>     |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 15<br>3<br>0<br>13 | 1<br>13<br>14<br>8 | 8<br>4<br>7<br>10   | 14<br>7<br>11<br>1 | 6<br>15<br>10<br>3 | 11<br>2<br>4<br>15  | 3<br>8<br>13<br>4  | 4<br>14<br>1<br>2   | 9<br>12<br>5<br>11  | 7<br>0<br>8<br>6    | 2<br>1<br>12<br>7  | 13<br>10<br>6<br>12 | 12<br>6<br>9<br>0  | 0<br>9<br>3<br>5   | 5<br>11<br>2<br>14 | 10<br>5<br>15<br>9 |
| 0                | $\delta_3$         |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    | 0                   |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 13<br>13<br>13     | 7<br>6<br>10       | 9<br>0<br>4<br>13   | 9<br>9<br>0        | 0<br>3<br>8<br>6   | 5<br>4<br>15<br>9   | 6<br>3<br>8        | 5<br>10<br>0<br>7   | 2<br>11<br>4        | 13<br>8<br>1<br>15  | 12<br>5<br>2<br>14 | 7<br>14<br>12<br>3  | 12<br>5<br>11      | 4<br>11<br>10<br>5 | 15<br>14<br>2      | 8<br>1<br>7<br>12  |
|                  | S4                 |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 7<br>13<br>10<br>3 | 13<br>8<br>6<br>15 | 14<br>11<br>9<br>0  | 3<br>5<br>0<br>6   | 0<br>6<br>12<br>10 | 6<br>15<br>11<br>1  | 9<br>0<br>7<br>13  | 10<br>3<br>13<br>8  | 1<br>4<br>15<br>9   | 2<br>7<br>1<br>4    | 8<br>2<br>3<br>5   | 5<br>12<br>14<br>11 | 11<br>1<br>5<br>12 | 12<br>10<br>2<br>7 | 4<br>14<br>8<br>2  | 15<br>9<br>4<br>14 |
|                  |                    |                    |                     |                    |                    |                     |                    | S                   | 5                   |                     |                    |                     |                    |                    |                    | _                  |
| 0<br>1<br>2<br>3 | 2<br>14<br>4<br>11 | 12<br>11<br>2<br>8 | 4<br>2<br>1<br>12   | 1<br>12<br>11<br>7 | 7<br>4<br>10<br>1  | 10<br>7<br>13<br>14 | 11<br>13<br>7<br>2 | 6<br>1<br>8<br>13   | 8<br>5<br>15<br>6   | 5<br>0<br>9<br>15   | 3<br>15<br>12<br>0 | 15<br>10<br>5<br>9  | 13<br>3<br>6<br>10 | 0<br>9<br>3<br>4   | 14<br>8<br>0<br>5  | 9<br>6<br>14<br>3  |
|                  |                    |                    |                     |                    |                    |                     |                    | 5                   | 6                   |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 12<br>10<br>9<br>4 | 1<br>15<br>14<br>3 | 10<br>4<br>15<br>2  | 15<br>2<br>5<br>12 | 9<br>7<br>2<br>9   | 2<br>12<br>8<br>5   | 6<br>9<br>12<br>15 | 8<br>5<br>3<br>10   | 0<br>6<br>7<br>11   | 13<br>1<br>0<br>14  | 3<br>13<br>4<br>1  | 4<br>14<br>10<br>7  | 14<br>0<br>1<br>6  | 7<br>11<br>13<br>0 | 5<br>3<br>11<br>8  | 11<br>8<br>6<br>13 |
|                  | \$ <sub>7</sub>    |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 4<br>13<br>1<br>6  | 11<br>0<br>4<br>11 | 2<br>11<br>11<br>13 | 14<br>7<br>13<br>8 | 15<br>4<br>12<br>1 | 0<br>9<br>3<br>4    | 8<br>1<br>7<br>10  | 13<br>10<br>14<br>7 | 3<br>14<br>10<br>9  | 12<br>3<br>15<br>5  | 9<br>5<br>6<br>0   | 7<br>12<br>8<br>15  | 5<br>2<br>0<br>14  | 10<br>15<br>5<br>2 | 6<br>8<br>9<br>3   | 1<br>6<br>2<br>12  |
|                  | S <sub>8</sub>     |                    |                     |                    |                    |                     |                    |                     |                     |                     |                    |                     |                    |                    |                    |                    |
| 0<br>1<br>2<br>3 | 13<br>1<br>7<br>2  | 2<br>15<br>11<br>1 | 8<br>13<br>4<br>14  | 4<br>8<br>1<br>7   | 6<br>10<br>9<br>4  | 15<br>3<br>12<br>10 | 11<br>7<br>14<br>8 | 1<br>4<br>2<br>13   | 10<br>12<br>0<br>15 | 9<br>5<br>6<br>12   | 3<br>6<br>10<br>9  | 14<br>11<br>13<br>0 | 5<br>0<br>15<br>3  | 0<br>14<br>3<br>5  | 12<br>9<br>5<br>6  | 7<br>2<br>8<br>11  |



#### Importance of substitution

- XOR and permutation are linear functions
  - Solve for the key given plaintext and ciphertext?
- Bit differences in inputs are not changed at all by permuting bits
- XOR also preserves differences in bits



## Different approaches (preview)

- DES simply tried to thwart these two specific types of attack (linear and differential) by carefully choosing the S boxes and letting them destroy information about the input (okay because of Feistel structure)
- AES is going to do something a lot more clever, that is invertible (no need for the Feistel structure, so fewer rounds) but still thwarts linear and differential cryptanalysis.



#### *Cryptography Engineering* by Ferguson *et al.*



Niels Ferguson Bruce Schneier Tadayoshi Kohno



#### Acknowledgments and resources

- Many of the above images are from Wikipedia
- https://www.youtube.com/watch?v=JiQz58Y67To