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RSA

● Security is based on the hardness of integer 
factorization



  

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are 

relatively prime to n
● (61 – 1)(53 - 1) = 3120

● Carmichael’s totient function = lcm(60, 52)
● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1



  

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Also need extended Euclidean algorithm

● Using RSA for key exchange or encryption is often a red flag, more 
commonly used for signatures



  



  



  

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”



  



  

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function



  



  



  



  

(About 665 bits, 2048 or 4096 are standard today)



  



  



  



  



  

= about 665 bits



  



  



  



  



  

Side notes

● GCHQ claims to have invented RSA in 1973, and 
declassified this info in 1997

● In my own research (e.g., looking for amateurish crypto 
in Android apps) using RSA for key distribution is often a 
red flag

● An authenticated version of Diffie-Hellman is better, most 
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)



  

RSA in real cryptosystems

● What we just learned, and read about in the paper, is 
called “Textbook RSA”

● Not secure and should not be used (padding is strictly 
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels



  

Symmetric attack types

● Ciphertext only
● Think Caesar cipher, or Viginere cipher

● Known plaintext
● Linear cryptanalysis

● Chosen plaintext
● Differential cryptanalysis
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Asymmetric notions of semantic security

● Now threat models are very complicated, but in a 
nutshell:

● IND-CPA – Indistinguishability under chosen plaintext attack
● IND-CCA – Indistinguishability under chosen ciphertext 

attack
● IND-CCA2 – Indistinguishability under chose ciphertext 

attack (adaptive)
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https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf
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https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg

OAEP
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IND-CCA2 in a nutshell

● I’ll encrypt or decrypt as many plaintexts or ciphertexts as 
you like

● plaintext/ciphertext pairs
● You give me two plaintexts, I’ll flip a coin (heads or tails) and 

encrypt one of them (you don’t know which) to give you C
● In polynomial time, you can do more encryption and 

decryption, just not for C
● You guess my coin flip (heads or tails)
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If you can’t win with >50% probability

● You can’t break my scheme (e.g., OAEP) with an 
adaptive chosen ciphertext attack
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If you can win with >50% probability

● You’ve potentially broken my scheme with an adaptive 
chosen ciphertext attack

● Let’s win the Turing award together, by publishing a 
paper showing how to factor large integers with a 
classical computer in polynomial time

● Or, build a cybercrime cartel together?



  

Okay to grab the RSA paper and start coding?  
Or just use a textbook, i.e., textbook RSA?
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c × 2127e
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By the 128th step...
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WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf

https://arxiv.org/pdf/1802.03367.pdf


Euclidean Algorithm
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For gcd (greatest common divisor)

● https://en.wikipedia.org/wiki/Euclidean_algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Extended Euclidean Algorithm

● https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
● https://crypto.stackexchange.com/questions/5889/calculating-rs

a-private-exponent-when-given-public-exponent-and-the-modul
us-fact

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
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See also…

● Fermat’s Little Theorem
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Takeaways

● Generally, DH for key exchange and RSA for signatures
– Alternatives, such as elliptic curves

● Symmetric cyrpto for the actual encryption
● Semantic security is the gold standard for asymetric

– Reduction proofs
● “Textbook RSA,” like you’ll do on the exams, is dangerous
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