RSA

CSE 548 Spring 2025
jedimaestro@asu.edu



A L L LT T e e ey




RSA

« Security is based on the hardness of integer
factorization



n=pq
p and q are primes, suppose p =61, g =53

n = 3233

Euler's totient counts the positive integers up to n that are
relatively prime to n

(61 —1)(53 - 1) = 3120
Carmichael’s totient function = lcm(60, 52)

52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
60,120,180,240,300,360,420,480,540,600,660,720,780

Choose 1 < e <780 coprime to 780, e.g., e = 17
d is the modular multiplicative inverse of e, d = 413
413 *17 mod 780 =1



Public key is (n = 3233, e = 17)

Private key is (n = 3233, d = 413)

Encryption: c(m = 65) = 65" mod 3233 = 2790
Decryption: m = 2790%° mod 3233 = 65

Could also do...

« Signature: s = 100 mod 3233 = 1391
« Verification: 100 = 1391' mod 3233

Fast modular exponentiation is the trick
« Also need extended Euclidean algorithm

Using RSA for key exchange or encryption is often a red flag, more
commonly used for signatures



jedi@routes6: ~

:~%$ python3
Python 3.8.2 (default, Jul 16 2020, 14:00:26)

[GCC 9.3.0] on 1linux
Type "help", "copyright", "credits" or "license" fTor more information.

>>> for i in range (52, 781, 52):
for j in range (60, 781, 60):
if (i == j):
print(i)

print((413 * 17) % 780)

print(pow(2790, 413, 3233))

print(pow(65, 17, 3233))
2790
>>> print(pow(100, 413, 3233))

1391
>>> print(pow(1391, 17, 3233))




jedi@routes6: ~

>>> print(pow(2790, 413, 3233))
65

>>> print(pow(65, 17, 3233))
2790

>>> print(pow(100, 413, 3233))
1391

>>> print(pow(1391, 17, 3233))
100

>>> print(pow(7, 17, 3233))
2369

>>> print((2369*2790) % 3233)
1258
print(pow(1258, 413, 3233))

print(7*65)

print("{0:b}".format(78913))
1001101000100600001
>>> print("{0:b}".format(78913*32))
1001101000100000100000
>>> print("{0:b}".format(78913<<5))
1001101000100000100000
—_— |



“Relatively prime”

9 is not prime, 9 = 32

13 is prime

10 is not prime, 10 = 5*2

9 and 10 are relatively prime, gcd(9,10) = 1

5 and 10 are not relatively prime, gcd(5,10) =5
Also called “coprime”



M?*™ =1 (mod n) . (3)

Here ¢(n) is the Euler totient function giving number of positive integers less than n
which are relatively prime to n. For prime numbers p,

o(p)=p—1.

In our case, we have by elementary properties of the totient function [7]:

o(n) = o(p)-9(q)
= (p—1)-(¢g—1) (4)
n—((p+q +1.

Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

Oo———0



Euler's totient function

* https://en.wikipedia.org/wiki/Euler%27s_totient function

(fasi]faef]]

~\
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively

Y

C prime to n. It is written using the Greek letter phi as .:p(n) or gé(n), and may also be called Euler's phi function.

i)

(Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then
@(mn) = (p[m}(p(n].[41[5] This function gives the order of the multiplicative group of integers modulo n (the group ol
O— units of the ring Z/RZ}.[E’] It is also used for defining the RSA encryption system.

S—

O~

(8]



:O—O:
On®,

M\ M
Since d is relatively prime to ¢(n), it has a multiplicative inverse e in the ring of
integers modulo ¢(n):

e-d=1 (mod ¢(n)). (5)
0O
“o—o-
OO
D(E(M)) = (E(M))*=(M%* (modn)= M (mod n
E(D(M)) = (D(M)) = (M%* (modn)=M* (mod n)
and
Med = MF9MWHL (mod n) (for some integer k).
OO
O0—O



O0—0O._
From (3) we see that for all M such that p does not divide M

MP~1 =1 (mod p)
and since (p — 1) divides ¢(n)
M*ESTL = A (mod p).

This is trivially true when M = 0 (mod p), so that this equality actually holds for
all M. Arguing similarly for ¢ yields

MFEMF = A (mod q) .
Together these last two equations imply that for all M,
Mt = MFT = M (mod n).

This implies (1) and (2) for all M,;0 < M < n. Therefore £ and D are inverse
permutations. (We thank Rich Schroeppel for suggesting the above improved version
of the authors’ previous proof.)

Oo———0



o—=0

MM
Computing M*¢ (mod n) requires at most 2 - log,(e) multiplications and 2 - log,(e)

divisions using the following procedure (decryption can be performed similarly using
d instead of e):

Step 1. Let epep_1...e1e9 be the binary representation of e.
Step 2. Set the variable C' to 1.
Step 3. Repeat steps 3a and 3b for:e =k, k—1,...,0:
Step 3a. Set C' to the remainder of C? when divided by n.
Step 3b. If ¢; = 1, then set C' to the remainder of C'- M when divided by n.
Step 4. Halt. Now C is the encrypted form of M.

This procedure is called “exponentiation by repeated squaring and multiplication.”
This procedure is half as good as the best; more efficient procedures are known.
Knuth [3] studies this problem in detail.

OO

Oo———0



Each user must (privately) choose two large random numbers p and ¢ to create his
own encryption and decryption keys. These numbers must be large so that it is not
computationally feasible for anyone to factor n = p - ¢. (Remember that n, but not
p or ¢, will be in the public file.) We recommend using 100-digit (decimal) prime
numbers p and ¢, so that n has 200 digits.

To find a 100-digit “random” prime number, generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem |[7], about
(In10*Y) /2 = 115 numbers will be tested before a prime is found.

\ A

O0—0O (About 665 bits, 2048 or 4096 are standard today)



MM
To test a large number b for primality we recommend the elegant “probabilistic”

algorithm due to Solovay and Strassen [12]. It picks a random number a from a
uniform distribution on {1,...,b— 1}, and tests whether

ged(a,b) = 1 and J(a,b) = a® /2 (mod b), (6)



To gain additional protection against sophisticated factoring algorithms, p and ¢
should differ in length by a few digits, both (p — 1) and (¢ — 1) should contain large
prime factors, and ged(p — 1, — 1) should be small. The latter condition is easily
checked.

ensuring that (u — 1) also has a large prime factor.
A\



:O—O:
On®,

C How to Choose d

It is very easy to choose a number d which is relatively prime to ¢(n). For example,
any prime number greater than max(p,q) will do. It is important that d should be
chosen from a large enough set so that a cryptanalyst cannot find it by direct search.

D How to Compute ¢ from d and ¢(n)

o0—0 . .
OEO Fuclid’s algorithm

If e turns out to be less than log,(n), start over by choosing another value of d.
This guarantees that every encrypted message (except M = 0 or M = 1) undergoes
some “wrap-around” (reduction modulo n) .

OO

Oo———0



:O—O:
On®,

OO  The era of “electronic mail” [10] may soon be upon us;

OO0

:O—O:
Oo—=O0

encryption keys. (We assume that the intruder cannot modify or insert messages into
the channel.) Ralph Merkle has developed another solution [5] to this problem.

( A public-key cryptosystem can be used to “bootstrap” into a standard encryption
scheme such as the NBS method. Once secure communications have been established,
the first message transmitted can be a key to use in the NBS scheme to encode all

¢ following messages. This may be desirable if encryption with our method is slower
than with the standard scheme. (The NBS scheme is probably somewhat faster if
special-purpose hardware encryption devices are used; our scheme may be faster on
a general-purpose computer since multiprecision arithmetic operations are simpler to
implement than complicated bit manipulations.)

0,0

OO

Oo———0



200-digit message M

logz[lozm) = about 665 bits



P N o N

Since no techniques exist to prove that an encryption scheme is secure, the only test
available is to see whether anyone can think of a way to break it. The NBS standard
was “certified” this way; seventeen man-years at IBM were spent fruitlessly trying to
break that scheme. Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure. (Actually there is some controversy

concerning the security of the NBS method [2].)



:O—O:
On®,

0,0
How can n be factored using ¢(n)? First, (p + ¢) is obtained from n and ¢(n) =

n—(p+q)+1. Then (p— q) is the square root of (p+ q)? — 4n. Finally, ¢ is half the
difference of (p + ¢) and (p — q).

Therefore breaking our system by computing ¢(n) is no easier than breaking our

system by factoring n. (SHSNRASHbECOMpOSIEENA (N SNAIoCoMpiie
if n is prime.)

OO

~\ N\

A knowledge of d enables n to be factored as follows. Once a cryptanalyst knows d
he can calculate e - d — 1, which is a multiple of ¢(n). Miller [6] has shown that n can
be factored using any multiple of ¢(n). Therefore if n is large a cryptanalyst should
not be able to determine d any easier than he can factor n.

~0—O"
0,0

OO

Oo———0



:O—O:
On®,

OO
/'\O-O/\
D Computing D in Some Other Way

Although this problem of “computing e-th roots modulo n without factoring n” is
not a well-known difficult problem like factoring, we feel reasonably confident that it
is computationally intractable. It may be possible to prove that any general method
of breaking our scheme yields an efficient factoring algorithm. This would establish
that any way of breaking our scheme must be as difficult as factoring. We have not
been able to prove this conjecture, however.

Our method should be certified by having the above conjecture of intractability
withstand a concerted attempt to disprove it. The reader is challenged to find a way
to “break” our method.






Side notes

GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

In my own research (e.g., looking for amateurish crypto
In Android apps) using RSA for key distribution is often a
red flag

« An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)



RSA in real cryptosystems

* What we just learned, and read about in the paper, Is
called “Textbook RSA”

* Not secure and should not be used (padding is strictly
necessary in real schemes)

« Padding oracle attacks (same idea as for CBC)
« Side channels



Symmetric attack types

* Ciphertext only
« Think Caesar cipher, or Viginere cipher
* Known plaintext
Linear cryptanalysis
* Chosen plaintext
 Differential cryptanalysis



Asymmetric notions of semantic security

* Now threat models are very complicated, but in a
nutshell:

IND-CPA — Indistinguishability under chosen plaintext attack

IND-CCA — Indistinguishability under chosen ciphertext
attack

IND-CCAZ2 — Indistinguishability under chose ciphertext
attack (adaptive)

27



A preliminary version of this paper appeared in Advances in Cryptology — Eurocrypt 94 Proceed-
ings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed., Springer-Verlag, 1994,

Optimal Asymmetric Encryption —
How to Encrypt with RSA

MiHIR BELLARE® PHILLIP ROGAWAYT

November 19, 1995

https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf o8



00 Seed Hash(L) O?F,"S')OO 01 message N
DB
v
—— MeF ——(H  OAEP
) 4
C)« MGF <
\ 4 \ 4 \ 4
00 'maskedSeed maskedDB

.
encoded message EM

https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg

29



IND-CCAZ2 in a nutshell

I'll encrypt or decrypt as many plaintexts or ciphertexts as
you like

plaintext/ciphertext pairs

You give me two plaintexts, I'll flip a coin (heads or tails) and
encrypt one of them (you don’t know which) to give you C

In polynomial time, you can do more encryption and
decryption, just not for C

You guess my coin flip (heads or tails)

30



If you can’t win with >50% probability

* You can’'t break my scheme (e.g., OAEP) with an
adaptive chosen ciphertext attack

31



If you can win with >50% probability

You've potentially broken my scheme with an adaptive
chosen ciphertext attack

Let’s win the Turing award together, by publishing a
paper showing how to factor large integers with a
classical computer in polynomial time

* Or, build a cybercrime cartel together?

32



Okay to grab the RSA paper and start coding?
Or just use a textbook, i.e., textbook RSA?



“o—o-  Let C be the RSA encryption of 128-bit AES key k
o0  with RSA public key (n, e). Thus, we have

o C =k (mod n)
95—~ Now let Cj, be the RSA encryption of the AES key
0—0 ky = 2%k
o0 lLe., k bitshifted to the left by b bits. Thus, we have

Cb — kbe (IIlOd n)



Cyr = kp©

(mod n)

0
Cb

= mo d ?’1)
2EE d n) (mo
b

od n)
od n)(2% mod
= (k* m

- kezbe
: (zbk)e
— kbe

(mod n)

(mod n)

(mod n)



Suppose the client whose communications we want to decrypt encrypts the following 128-bit AES key
O—O with 1024-bit RSA and sends it to the server:

OO 1011000010010110011101111011101100100010111111001110101011110011
O—O 0000000011100100101111001001010100100011101101010000101110111011

O O 36



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
10110000100101100111011110111011001000101TT111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011




o—O This shows what the server sees as the RSA plaintext after it decrypts the ciphertext we sent it,
O O which we are trying to trick the server into leaking bits of to us. So, we as the attacker have recorded ¢ by
OO eavesdropping on the client and server’s communications over the Internet. But without the private key, d,
00 we don’t know what m (the green part, which is the AES key to decrypt the rest of the message) is. Let’s

O0—O explore what happens if we open our own connection to the server, and as our ciphertext we send ¢ x 2°,
(O————) The server will decrypt that into the following plaintext:

O O 38



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000001
0110000100101100111011110111011001000101111110011101010111100110
0000000111001001011110010010101001000111011010100001011101110110




So, we know how to double plaintexts by manipulating ciphertexts. What if we double it more than
once? What if we do it 16 times, by sending ¢ x 21¢ as out ciphertext. When we multiplied the plaintext
by 2 above, we effectively bit shifted the AES key by 1. Now we’re multiplying the plaintext by 216, which
is the equivalent of bit-shifting to the left 16 times:

40



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000101 1000010010110
0111011110111011001000101111110011101010111100110000000011100100
10111100100101010010001110110101000010111011101 10000000000000000

“41



C X 2127@

42



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0101100001001011001110111101110110010001011111100111010101111001
1000000001110010010111100100101010010001110110101000010111011101
1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

“4O



Now, we’ve finally figured out step one of our attack. By sending ¢ x 2127¢ as our ciphertext, we’ve

OO forced the server to encrypt what it sends back to us with one of two AES keys, either...
o—oO

O—O 0000000000000000000000000000000000000000000000000000000000000000
OO 0000000000000000000000000000000000000000000000000000000000000000

C C ...0T...

o——=0
O0—O 1000000000000000000000000000000000000000000000000000000000000000
OO0 0000000000000000000000000000000000000000000000000000000000000000

O O 44



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0010110000100101100ITI01T110111011001000101111110011101010111100
1100000000111001001011110010010101001000111011010100001011101110
[ 100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000




So now there are two bits in our AES key with the server that we don’t know for sure are zeroes, but
we don’t want to try all four possibilities because that’s not going to be efficient going forward. We already
know the bit in blue from step 1, so really there are only two possibilities of keys to try: Either...

0100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

...0rL...

1100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

21256

So then, for step 3, we would send ¢ x as our ciphertext, and the server would decrypt:

46



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0001011000010010110011101111011101100100010111111001110101011110
011000000001 1100100101111001001010100100011101101010000101110111
0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000




...OL...

0110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

1 110000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

48




By the 128" step...

49



0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1011000010010110011101111011101100100010111111001110101011110011
0000000011100100101111001001010100100011101101010000101110111011




C§}<%: 0011000010010110011101111011101100100010111111001110101011110011
O—<C 0000000011100100101111001001010100100011101101010000101110111011

OO  or.

o—O 1011000010010110011101111011101100100010111111001110101011110011
O—O 0000000011100100101111001001010100100011101101010000101110111011

O O 51



WUP requests

* Full attack is at:


https://arxiv.org/pdf/1802.03367.pdf

ISSesessessssss

Euclidean Algorithm

T e



For gcd (greatest common divisor)



https://en.wikipedia.org/wiki/Euclidean_algorithm

Subtraction-based
animation of the
Euclidean algorithm. The
initial rectangle has
dimensions a = 1071 and
b = 462. Squares of size
462x462 are placed within
it leaving a 462x147
rectangle. This rectangle
is tiled with 147x147
squares until a 21x147
rectangle is left, which in
turn is tiled with 21x21
squares, leaving no
uncovered area. The
smallest square size, 21,
is the GCD of 1071 and
462.

T I T

=1



function gcd(a, b)
while a # b
if a > b
a :=a->o
else
b :=b - a

return a




function gcd(a, b)
if b = 0
return a
else
return gcd(b, a mod b)

T LI L a1



Extended Euclidean Algorithm



https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact

Your goal is to find d such thated = 1 (mod ¢(n)).

Recall the EED calculates & and y such that az + by = ged (a, b). Nowleta = e, b = ¢(n),
and thus ged (e, @(n)) = 1 by definition (they need to be coprime for the inverse to exist). Then

you have:
ex + p(n)y =1
Take this modulo (n), and you get:
ex =1 (mod ¢(n))

And it's easy to see that in this case, © = d. The value of 1 does not actually matter, since it will
get eliminated modulo c,a(-n} regardless of its value. The EED will give you that value, but you can

safely discard it.




The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46. The
greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at
row 6, because the remainder in it is 0. Bézout coefficients appear in the last two entries of the second-to-
last row. In fact, it is easy to verify that -9 x 240 + 47 x 46 = 2. Finally the last two entries 23 and —120 of
the last row are, up to the sign, the quotients of the input 46 and 240 by the greatest common divisor 2.

index i  quotient gj-; Remainder r; S; tj
0 240 1 0
1 46 0 1
2| 240+46=5240-5%x46=10 1-5x0=1 0-5x1=-5
3 46 +10=4 46-4x10=6| 0-4x1=-4 1-4x-5=21
4 10+6=1 10-1x6=4| 1-1x-4=5| -5-1x21=-26
5 6+4=1 6-1%x4=2|-4-1x5=-9 21 -1x-26=47
~ 6 4+2=2 4-2x2=0|5-2x-9=23|-26-2x 47 =-120 ~_

P



function extended gcd(a, b)
(old r, r) := (a, b)
(old s, s) = (1, O)
(old t, t) = (0, 1)

while r # 0 do

quotient := old r div r

(old r, r) := (r, old r — quotient x r)

(old s, s) := (s, old s - quotient x s)

(old t, t) = (t, old t - quotient x t)
output "Bézout coefficients:", (old s, old t)
output "greatest common divisor:", old r

output "quotients by the gcd:", (t, s)




See also...

e Fermat’s Little Theorem




Takeaways

* Generally, DH for key exchange and RSA for signatures
— Alternatives, such as elliptic curves
* Symmetric cyrpto for the actual encryption

e Semantic security is the gold standard for asymetric
- Reduction proofs
* “Textbook RSA,” like you'll do on the exams, is dangerous




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

