
 1

RSA

CSE 548 Spring 2025
jedimaestro@asu.edu

RSA

● Security is based on the hardness of integer
factorization

n = pq
● p and q are primes, suppose p = 61, q = 53
● n = 3233
● Euler's totient counts the positive integers up to n that are

relatively prime to n
● (61 – 1)(53 - 1) = 3120

● Carmichael’s totient function = lcm(60, 52)
● 52,104,156,208,260,312,364,416,468,520,572,624,676,728,780
● 60,120,180,240,300,360,420,480,540,600,660,720,780

● Choose 1 < e < 780 coprime to 780, e.g., e = 17
● d is the modular multiplicative inverse of e, d = 413
● 413 * 17 mod 780 = 1

● Public key is (n = 3233, e = 17)
● Private key is (n = 3233, d = 413)
● Encryption: c(m = 65) = 6517 mod 3233 = 2790
● Decryption: m = 2790413 mod 3233 = 65
● Could also do...

● Signature: s = 100413 mod 3233 = 1391
● Verification: 100 = 139117 mod 3233

● Fast modular exponentiation is the trick
● Also need extended Euclidean algorithm

● Using RSA for key exchange or encryption is often a red flag, more
commonly used for signatures

“Relatively prime”

● 9 is not prime, 9 = 32

● 13 is prime
● 10 is not prime, 10 = 5*2
● 9 and 10 are relatively prime, gcd(9,10) = 1
● 5 and 10 are not relatively prime, gcd(5,10) = 5
● Also called “coprime”

Euler's totient function

● https://en.wikipedia.org/wiki/Euler%27s_totient_function

(About 665 bits, 2048 or 4096 are standard today)

= about 665 bits

Side notes

● GCHQ claims to have invented RSA in 1973, and
declassified this info in 1997

● In my own research (e.g., looking for amateurish crypto
in Android apps) using RSA for key distribution is often a
red flag

● An authenticated version of Diffie-Hellman is better, most
common thing these days is ECDH (Elliptic Curve Diffie-
Hellman)

RSA in real cryptosystems

● What we just learned, and read about in the paper, is
called “Textbook RSA”

● Not secure and should not be used (padding is strictly
necessary in real schemes)

● Padding oracle attacks (same idea as for CBC)
● Side channels

Symmetric attack types

● Ciphertext only
● Think Caesar cipher, or Viginere cipher

● Known plaintext
● Linear cryptanalysis

● Chosen plaintext
● Differential cryptanalysis

 27

Asymmetric notions of semantic security

● Now threat models are very complicated, but in a
nutshell:

● IND-CPA – Indistinguishability under chosen plaintext attack
● IND-CCA – Indistinguishability under chosen ciphertext

attack
● IND-CCA2 – Indistinguishability under chose ciphertext

attack (adaptive)

 28
https://cseweb.ucsd.edu//~mihir/papers/oaep.pdf

 29
https://en.wikipedia.org/wiki/File:OAEP_encoding_schema.svg

OAEP

 30

IND-CCA2 in a nutshell

● I’ll encrypt or decrypt as many plaintexts or ciphertexts as
you like

● plaintext/ciphertext pairs
● You give me two plaintexts, I’ll flip a coin (heads or tails) and

encrypt one of them (you don’t know which) to give you C
● In polynomial time, you can do more encryption and

decryption, just not for C
● You guess my coin flip (heads or tails)

 31

If you can’t win with >50% probability

● You can’t break my scheme (e.g., OAEP) with an
adaptive chosen ciphertext attack

 32

If you can win with >50% probability

● You’ve potentially broken my scheme with an adaptive
chosen ciphertext attack

● Let’s win the Turing award together, by publishing a
paper showing how to factor large integers with a
classical computer in polynomial time

● Or, build a cybercrime cartel together?

Okay to grab the RSA paper and start coding?
Or just use a textbook, i.e., textbook RSA?

 36

 37

 38

 39

 40

 41

 42

c × 2127e

 43

 44

 45

 46

 47

 48

 49

By the 128th step...

 50

 51

WUP requests

● Full attack is at: https://arxiv.org/pdf/1802.03367.pdf

https://arxiv.org/pdf/1802.03367.pdf

Euclidean Algorithm

 54

For gcd (greatest common divisor)

● https://en.wikipedia.org/wiki/Euclidean_algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

 55

 56

 57

 58

Extended Euclidean Algorithm

● https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
● https://crypto.stackexchange.com/questions/5889/calculating-rs

a-private-exponent-when-given-public-exponent-and-the-modul
us-fact

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact
https://crypto.stackexchange.com/questions/5889/calculating-rsa-private-exponent-when-given-public-exponent-and-the-modulus-fact

 59

 60

 61

 62

See also…

● Fermat’s Little Theorem

 63

Takeaways

● Generally, DH for key exchange and RSA for signatures
– Alternatives, such as elliptic curves

● Symmetric cyrpto for the actual encryption
● Semantic security is the gold standard for asymetric

– Reduction proofs
● “Textbook RSA,” like you’ll do on the exams, is dangerous

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

