

DNS and related attacks

CSE 548 Spring 2026
jedimaestro@asu.edu

Outline

- IP and IP fragmentation basics
- Review: On-path vs. in-path vs. off-path
- Birthday attacks
 - Example: Wagner Sacramento's birthday attack on DNS (2002)
- Dan Kaminsky's DNS poisoning attack (2008) (concurrency)
- Side channel attacks (information theory)
 - Example: Fragmentation attack
- Solution: signatures
 - Important ingredient for signatures: *extended Euclidean algorithm*

Where do Internet standards come from?

- IETF = Internet Engineering Task Force
- RFC = Request for Comments
 - MUST, MUST NOT, SHOULD, SHOULD NOT, MAY (RFC 2119)
- “The only laws on the Internet are assembly and RFCs” -- Phrack 65
 - Assembly is an abstraction
 - RFCs are not always followed
 - Often ambiguous

IP reassembly

- Routers (or endhosts, if they want) can break IP packets up into fragments that the receiver has to reassemble
- Ambiguity in the way overlapping IP fragments are put back together into an IP packet
- All of the following images were plagiarized from:

<https://www.sans.org/reading-room/whitepapers/detection/ip-fragment-reassembly-scapy-33969>

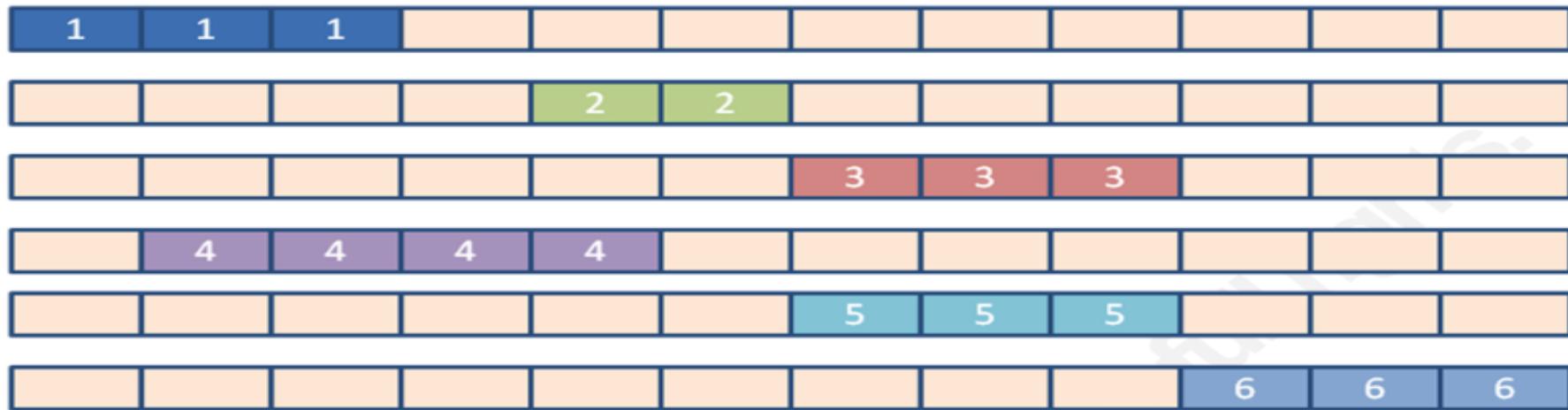
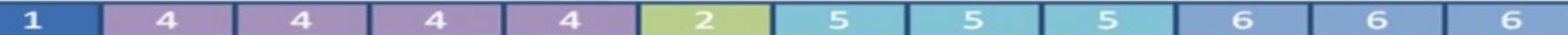



Figure 1: 6 Fragmented Packets (Shankar & Paxson, 2003)(Novak, 2005)

Reassembled using policy: First (Windows, SUN, MacOS, HPUX)

Reassembled using policy: Last/RFC791 (Cisco)

Reassembled using policy: Linux (Linux)

Reassembled using policy: BSD (AIX, FreeBSD, HPUX, VMS)

Reassembled using policy: BSD-Right (HP Jet Direct)

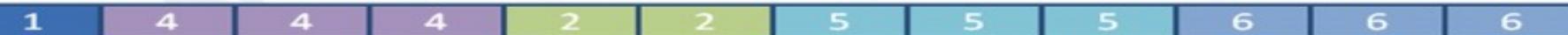


Figure 2: 5 Reassembly Methods (Shankar & Paxson, 2003)(Novak, 2005)

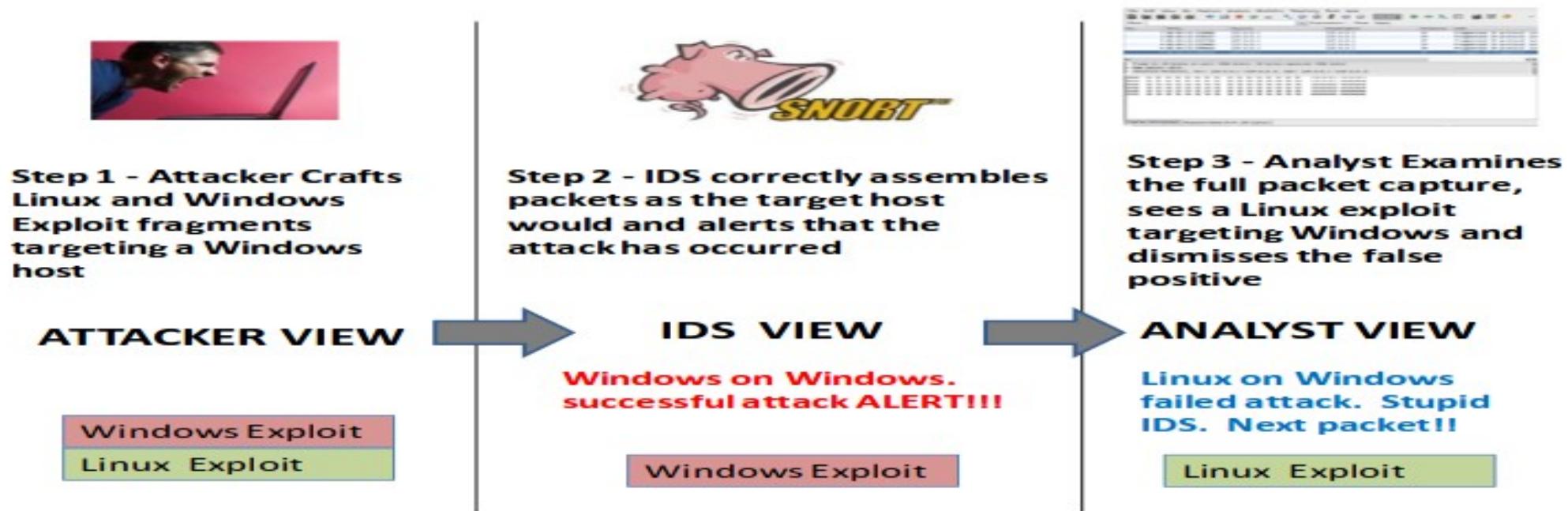


Figure 3: Views of the attacker, IDS and analyst

judyfrags.pcap - Wireshark

File Edit View Go Capture Analyze Statistics Telephony Tools Help

Filter: Expression... Clear Apply

No.	Time	Source	Destination	Protocol	Info
1	08:40:13.533896	127.0.0.1	127.0.0.1	IP	Fragmented IP protocol (pr
2	08:40:13.534327	127.0.0.1	127.0.0.1	IP	Fragmented IP protocol (pr
3	08:40:13.534726	127.0.0.1	127.0.0.1	IP	Fragmented IP protocol (pr
4	08:40:13.535460	127.0.0.1	127.0.0.1	IP	Fragmented IP protocol (pr
5	08:40:13.535820	127.0.0.1	127.0.0.1	IP	Fragmented IP protocol (pr
6	08:40:13.536183	127.0.0.1	127.0.0.1	IP	[Illegal IP fragments]

Frame 6: 44 bytes on wire (352 bits), 44 bytes captured (352 bits)
Raw packet data
Internet Protocol, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)

0000	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	11111111	11111111
0010	31	31	31	31	31	31	31	34	34	34	34	34	34	34	34	11111111	44444444
0020	34	34	34	34	34	34	34	32	32	32	32	32	32	32	32	44444444	22222222
0030	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33333333	33333333
0040	33	33	33	33	33	33	33	36	36	36	36	36	36	36	36	33333333	66666666
0050	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	66666666	66666666

Note the 111442333666 BSD reassembled payload

Wireshark's reassembly tab on the last fragment in the chain uses the BSD reassembly policy

Frame (44 bytes) Reassembled IPv4 (96 bytes)

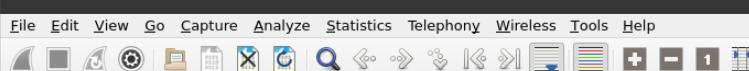

File: "judyfrags.pcap" 384 Byte... Packets: 6 Displayed: 6 Marked: 0 Load time: 0:00.000 Profile: Default

Figure 4: Wireshark uses BSD reassembly technique

IPID → IP header (layer 3)

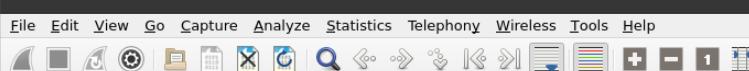
Source port → UDP header (layer 4)

TXID → DNS request and response
(layer 7)

udp.stream eq 2

No.	Time	Source	Destination	Info
1	8 1.285718287	10.42.0.14	10.42.0.1	Standard query 0x2b9f A hlx.meituan.com
2	734.510742303	10.42.0.1	10.42.0.14	Standard query response 0x2b9f A hlx.meituan

```


Frame 8: 75 bytes on wire (600 bits), 75 bytes captured (600 bits) on interface wlx6c5ab00ee69e, id 0
Ethernet II, Src: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7), Dst: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e)
Internet Protocol Version 4, Src: 10.42.0.14, Dst: 10.42.0.1
User Datagram Protocol, Src Port: 63826, Dst Port: 53

```

Source Port: 63826

Destination Port: 53

Length	Hex	Dec	Text
0000	6c 5a b0 0e e6 9e d2 4c cf 57 fe a7 08 00 45 00	108 90 176 14 230 150 218 72 251 87 254 167 8 0 69 0	lZ.....L .W...E.
0010	00 3d 63 56 40 00 40 11 c2 f7 0a 2a 00 0e 0a 2a	0 55 99 86 64 0 64 17 194 247 10 34 0 14 10 42	.=cV@. @.*....*
0020	00 01 f9 52 00 35 00 29 9d a6 2b 9f 01 00 00 01	0 1 255 82 0 53 0 45 157 166 43 255 1 0 0 1	..R.5.) ..+....
0030	00 00 00 00 00 03 68 6c 78 07 6d 65 69 74 75	0 0 0 0 0 3 104 108 88 118 101 109 105 116 115 117h lx.meitu
0040	61 6e 03 63 6f 6d 00 00 01 00 01	97 108 8 99 102 100 0 0 1 0 0 1	an.com....

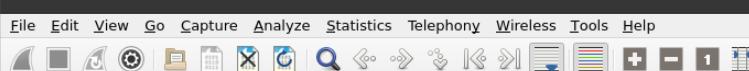
udp.stream eq 2

X ↻ +

Destination	Info	Protocol	Length
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com	DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS	DNS	107

· User Datagram Protocol, Src Port: 63826, Dst Port: 53

· Domain Name System (query)

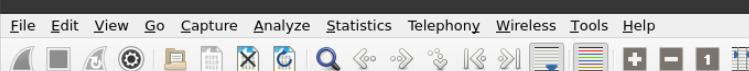

 Transaction ID: 0x2b9f

 Flags: 0x0100 Standard query

 Questions: 1

 Answer RRs: 0

Hex	Dec	Text
0000	6c 5a b0 0e e6 9e d2 4c cf 57 fe a7 08 00 45 00	lZ.....L·W...E.
0010	00 3d 63 56 40 00 40 11 c2 f7 0a 2a 00 0e 0a 2a	.=cV@.@@.....*...*
0020	00 01 f9 52 00 35 00 29 9d a6 2b 9f 01 00 00 01	...R.5.)...+.....
0030	00 00 00 00 00 03 68 6c 78 07 6d 65 69 74 75h.lx.meitu
0040	61 6e 03 63 6f 6d 00 00 01 00 01	an.com.....


Destination	Info	Protocol	Length
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com	DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS	DNS	107

```

Ethernet II, Src: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e), Dst: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7)
Internet Protocol Version 4, Src: 10.42.0.1, Dst: 10.42.0.14
User Datagram Protocol, Src Port: 53, Dst Port: 63826
  Source Port: 53
  Destination Port: 63826
  Length: 73

```

0020	00	0e	00	35	f9	52	00	49	a3	4c	2b	9f	81	80	00	01	..	5	R	I	.L+	..	
0030	00	02	00	00	00	00	03	68	6c	78	07	6d	65	69	74	75	h	lx	meitu	
0040	61	6e	03	63	6f	6d	00	00	01	00	01	c0	0c	00	01	00	an	com
0050	01	00	00	00	78	00	04	65	ec	09	69	c0	0c	00	01	00	x	e	..	i	..
0060	01	00	00	00	78	00	04	65	ec	41	22						x	e	..	A	"

Destination	Info	Protocol	Length
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com	DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS	DNS	107

```

Frame 73: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface wlx6c5ab00ee69e, interface
Ethernet II, Src: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e), Dst: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7)
Internet Protocol Version 4, Src: 10.42.0.1, Dst: 10.42.0.14
User Datagram Protocol, Src Port: 53, Dst Port: 63826
Domain Name System (response)

```

Transaction ID: 0x2b9f

0020	00	0e	00	35	f9	52	00	49	a3	4c	2b	9f	81	80	00	01	..	5	R	I	.	L	+	..
0030	00	02	00	00	00	03	68	6c	78	07	6d	65	69	74	75	h	lx	meitu			
0040	61	6e	03	63	6f	6d	00	00	01	00	01	c0	0c	00	01	00	an	com	
0050	01	00	00	00	78	00	04	65	ec	09	69	c0	0c	00	01	00	..	x	e	..	i	
0060	01	00	00	00	78	00	04	65	ec	41	22						..	x	e	..	A	"		

```
jedi@tortuga:~$ dig @8.8.8.8 ns meituan.com | head -n 21
```

```
; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> @8.8.8.8 ns meituan.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59326
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;meituan.com.           IN      NS

;; ANSWER SECTION:
meituan.com.        21600    IN      NS      ns3.dnsv5.com.
meituan.com.        21600    IN      NS      ns4.dnsv5.com.

;; Query time: 1029 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
;; WHEN: Mon Feb  2 09:58:19 MST 2026
;; MSG SIZE  rcvd: 82
jedi@tortuga:~$
```

```
jedi@tortuga:~$ dig @8.8.8.8 ns hlx.meituan.com | head -n 21

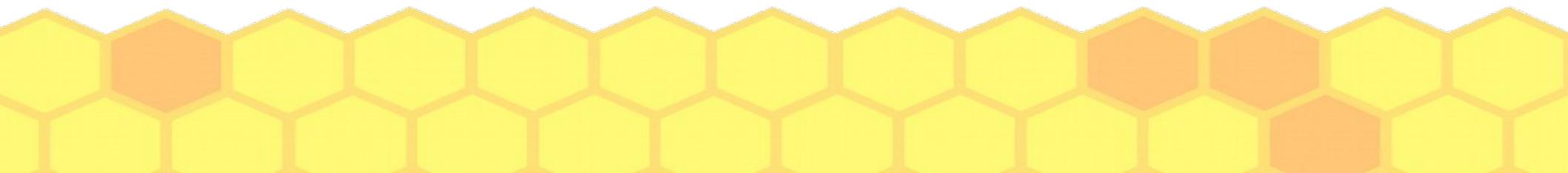
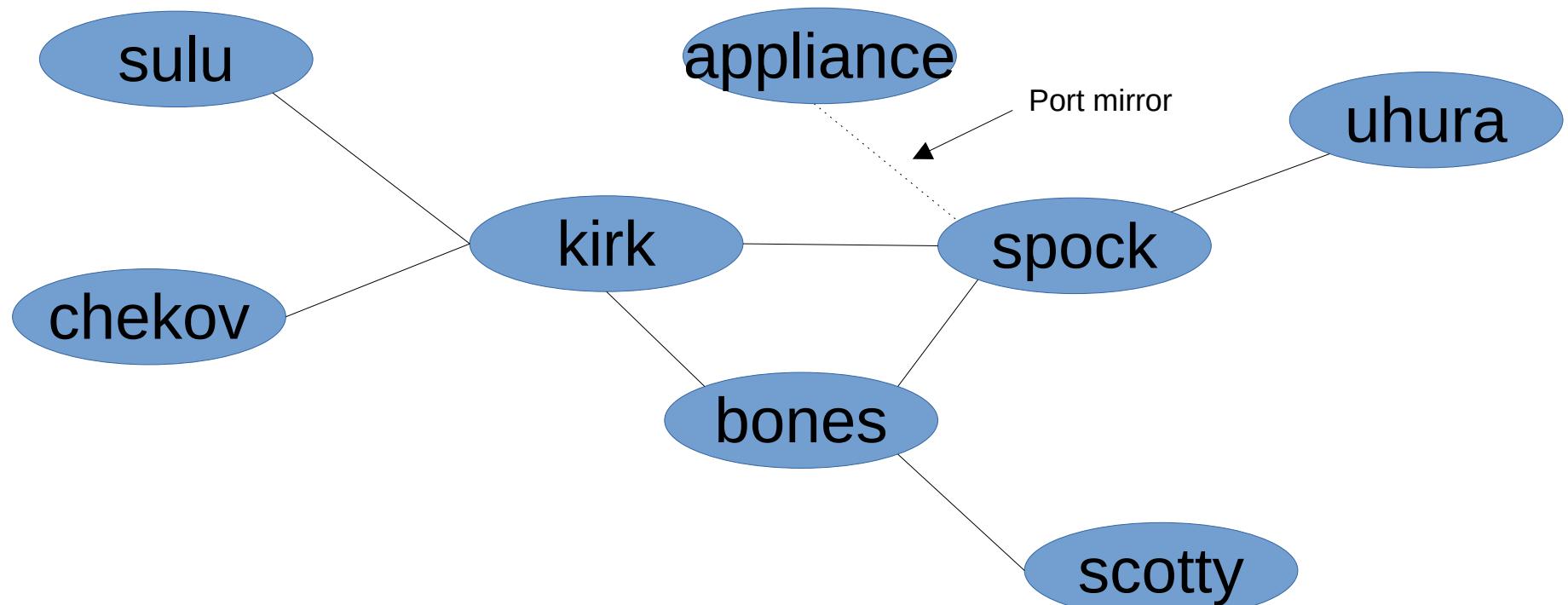
; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> @8.8.8.8 ns hlx.meituan.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30382
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;hlx.meituan.com.           IN      NS

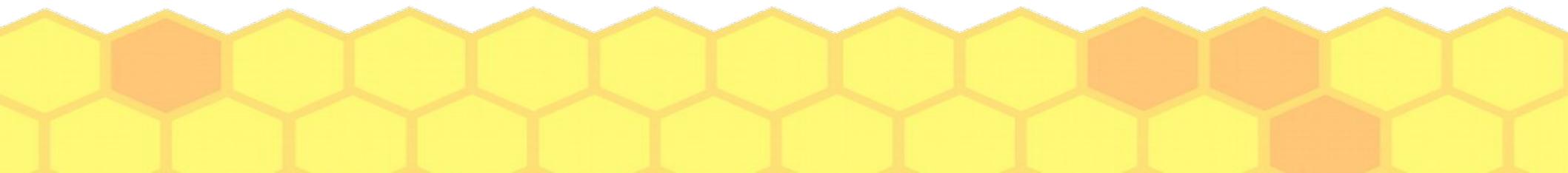
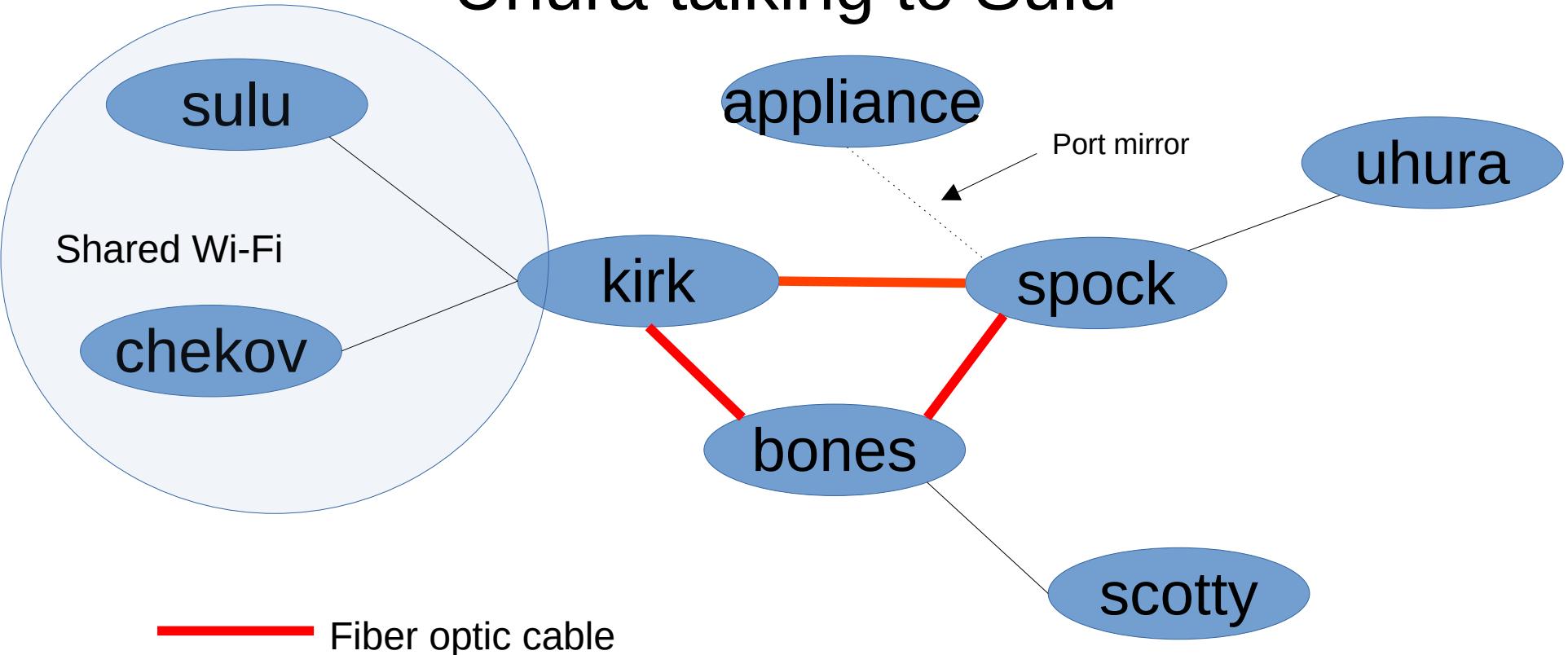
;; ANSWER SECTION:
hlx.meituan.com.      180      IN      CNAME    bi-hreport.vip.meituan.com.

;; AUTHORITY SECTION:
meituan.com.          180      IN      SOA     ns3.dnsv5.com. enterprise3dnsadm
in.dnspod.com. 1770016267 3600 180 1209600 180

;; Query time: 45 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
jedi@tortuga:~$
```



What stops me from saying `www.facebook.com` is a common name for `www.breakpointingbad.com`?

The primary goal of bailiwick checking is to prevent a malicious nameserver authoritative for example.com from providing (and a resolver from caching) records for other-example.net, or worse, for TLDs or the root zone.



<https://datatracker.ietf.org/doc/draft-qiu-dnsop-enhanced-bailiwick/#:~:text=The%20primary%20goal%20of%20bailiwick,TLDs%20or%20the%20root%20zone>.

Introduced in the mid 90's

Uhura talking to Sulu

Uhura talking to Sulu

sulu == DNS client, uhura == DNS server

- kirk and spock are in-path
- appliance is on-path
 - Gets a copy of the packets from the port mirror on kirk
- chekov is on-path
 - Shared Wi-Fi with sulu, kirk has a wireless interface and two fiber optic interfaces
- scotty and bones are off-path



On-path attack

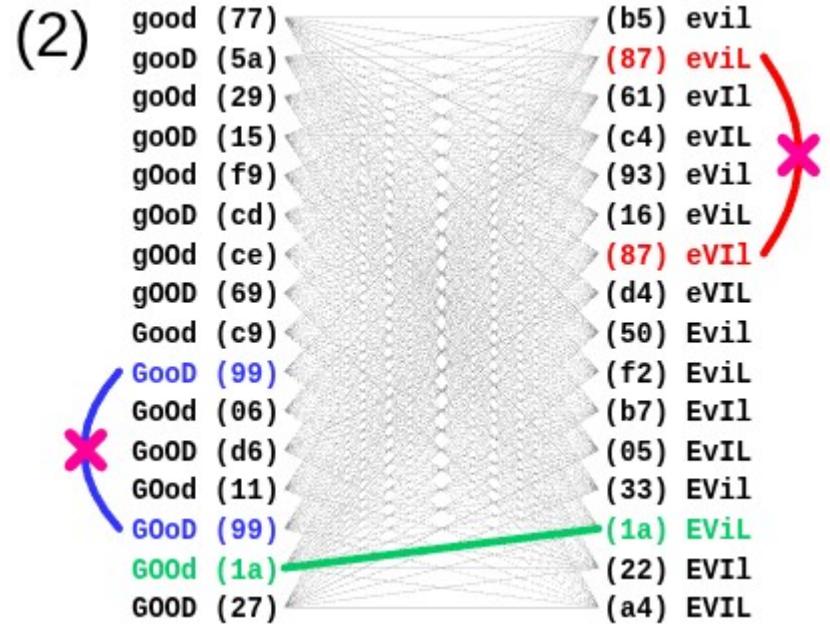
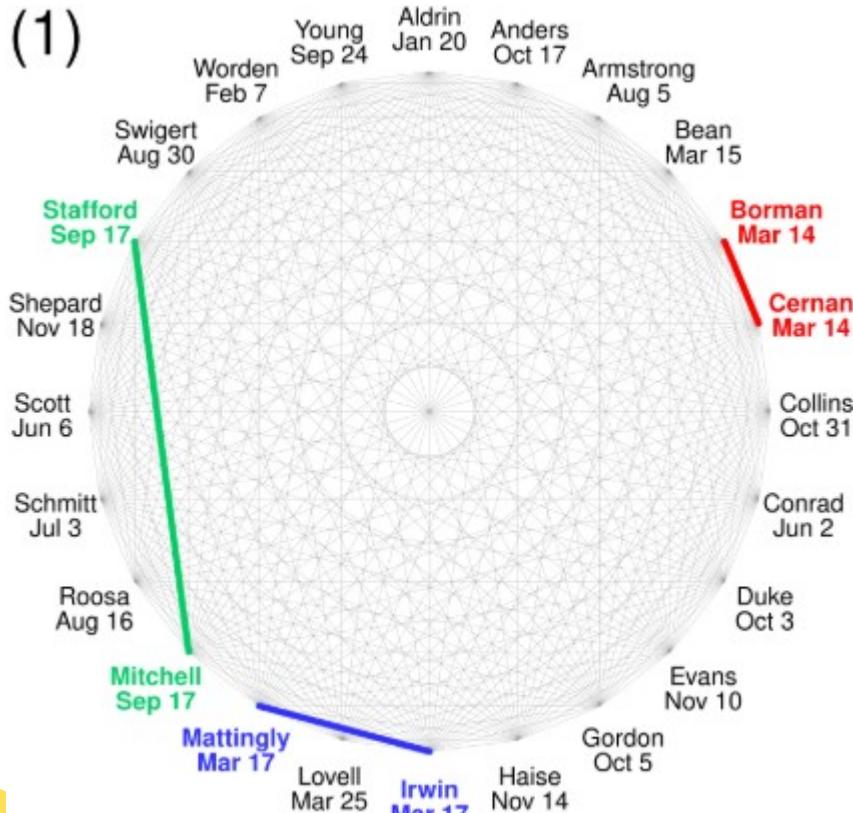
- Need to respond faster than the DNS server
 - Not hard, 3 seconds (example above) is an eternity
 - Maybe DoS the DNS server
- Need to get the TXID and source port correct
 - Trivial, just read them from the packet

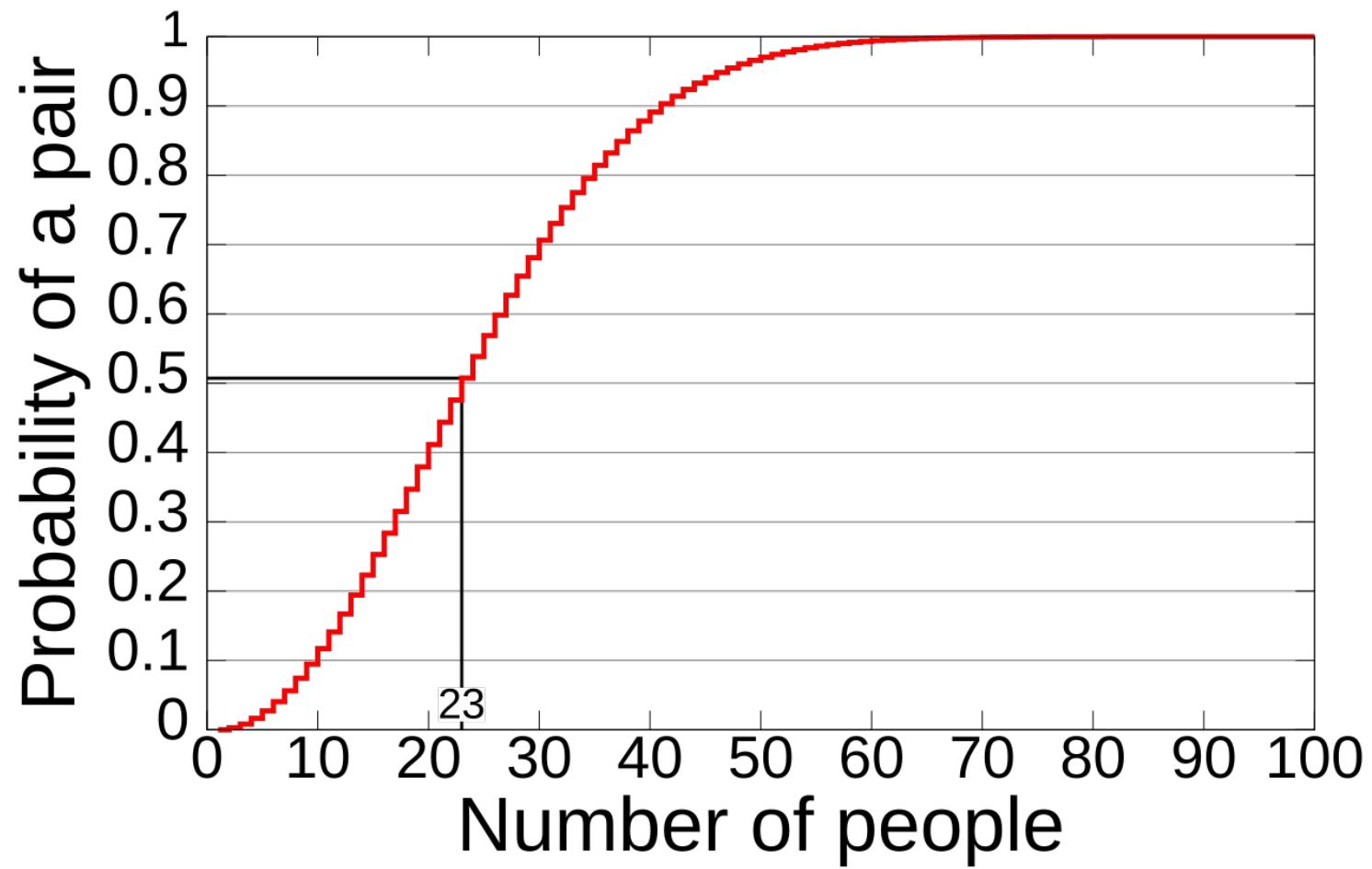
In-path attack

- ~~Need to respond faster than the DNS server~~
 - ~~Not hard, 3 seconds (example above) is an eternity~~
 - ~~Maybe DoS the DNS server~~
- Need to get the TXID and source port correct
 - Trivial, just read them from the packet
- Just don't forward the request to the DNS server
 - Or, do and then modify the response on its way back

Off-path attack

- Need to respond faster than the DNS server
 - ~~Not hard, 3 seconds (example above) is an eternity~~
 - Maybe DoS the DNS server
- Need to get the TXID and source port correct
 - **Not easy**, being off path means you're *blind* to these values
 - Guessing might work ($2^{16} * 2^{16} = 2^{32}$)
 - Side channels and birthday attacks even better
- Need to know what was queried and when
 - Cache poisoning (you know these things because you caused it)



Birthday Attacks


- <https://www.kb.cert.org/vuls/id/457>
- 2002

If the attacker has to guess...	...and is limited to the following number of open requests...	...it will take the following number of packets to achieve a 50% success rate (includes both requests and responses)
TID only (16bits)	1	32.7 k (2^{15})
TID only (16bits)	4	10.4 k
TID only (16bits)	200	427
TID only (16bits)	unlimited	426
TID and port (32 bits)	1	2.1 billion (2^{31})
TID and port (32 bits)	4	683 million
TID and port (32 bits)	200	15 million
TID and port (32 bits)	unlimited	109 k

Table 1: Number of packets required to reach 50% success probability for various numbers of open queries

https://en.wikipedia.org/wiki/Birthday_attack

Solution to the specific birthday attack on DNS
above... Don't allow multiple queries for the same
domain at the same time.

Dan Kaminsky's attack (2008)

- <https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf>

DNS is distributed

- Three possible answers to any question
 - “Here’s your answer”
 - “Go away”
 - “I don’t know, ask that guy over there”
 - This is delegation. You start with a request, and then get bounced around all over the place.
 - 13 root servers: “www.foo.com? I don’t know, go ask the com server, it’s at 1.2.3.4”
 - Com server: “www.foo.com? I don’t know, go ask the foo.com server, it’s at 2.3.4.5”
 - Foo.com server: “www.foo.com? Yeah, that’s at 3.4.5.6.”

jedi@tortuga:~


```
jedi@tortuga:~$ dig www.breakpointingbad.com

; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> www.breakpointingbad.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33334
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;www.breakpointingbad.com.      IN      A

;; ANSWER SECTION:
www.breakpointingbad.com. 1799  IN      A      149.28.240.117

;; Query time: 58 msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Mon Feb  2 10:21:40 MST 2026
;; MSG SIZE  rcvd: 69
```

```
jedi@tortuga:~$ 
```


jedi@tortuga:~

jedi@tortuga:~\$ dig www.kodak.com | head -n 21

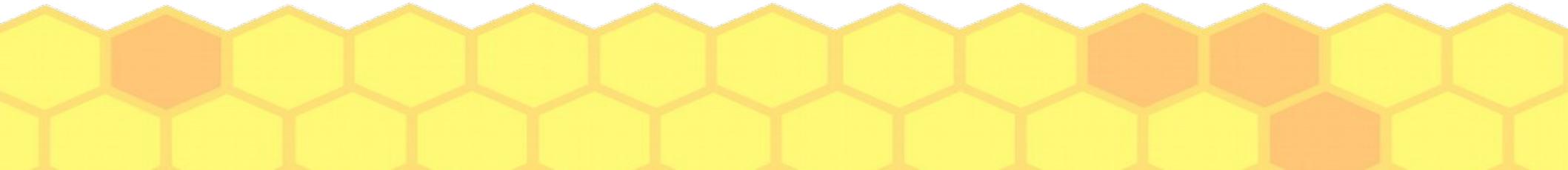
```
; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> www.kodak.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48823
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;www.kodak.com.           IN      A

;; ANSWER SECTION:
www.kodak.com.        260      IN      CNAME    web-prod-fd-bmhsdwc9gnbgdres.a01
.azurefd.net.
web-prod-fd-bmhsdwc9gnbgdres.a01.azurefd.net. 20 IN CNAME mr-a01.tm-azurefd.net.
mr-a01.tm-azurefd.net. 9      IN      A       150.171.109.147

;; Query time: 14 msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Mon Feb  2 10:25:33 MST 2026
;; MSG SIZE  rcvd: 148
jedi@tortuga:~$
```

- If the bad guy can reply 100 times before the good guy returns, that 65536 to 1 advantage drops to 655 to 1.
 - Alas...still long odds. And when he loses, he has to wait the TTL. That could be 655 days – almost 2 years!
 - Or maybe not.


Finally, the bad guy doesn't actually need to wait to try again.

- If the bad guy asks the name server to look up www.foo.com ten times, there will only be one race with the good guy
 - The first race will be lost (most likely), and then the other nine will be suppressed by the TTL
 - No new races on this name for one more day! Here, use the answer from a while ago
 - So, can we race on other names?
- If the bad guy asks the name server to look up 1.foo.com, 2.foo.com, 3.foo.com, and so on, for ten names, there will be 10 races with the good guy
 - TTL only stops repeated races for the same name!
- Eventually, the bad guy will guess the right TXID before the good guy shows up with it
 - And now...the bad guy is the proud spoofer of ... 83.foo.com
 - So? He didn't *want* to poison 83.foo.com. He wanted www.foo.com

Bait and Switch

- Is it possible for a bad guy, who has won the race for 83.foo.com, to end up stealing www.foo.com as well?
 - He has three possible replies that can be associated with correctly guessed TXID
 - 1) “Here’s your answer for 83.foo.com – it’s 6.6.6.6”
 - 2) “I don’t know the answer for 83.foo.com.”
 - 3) “83.foo.com? I don’t know, go ask the www.foo.com server, it’s at 6.6.6.6”
 - This has to work – it’s just another delegation
 - 13 root servers: “83.foo.com? I don’t know, go ask the com server, it’s at 1.2.3.4”
 - Com server: “83.foo.com? I don’t know, go ask the foo.com server, it’s at 2.3.4.5”
 - Foo.com server: “83.foo.com? I don’t know, go ask the www.foo.com server, it’s at 6.6.6.6”

Does bailiwick checking save us?

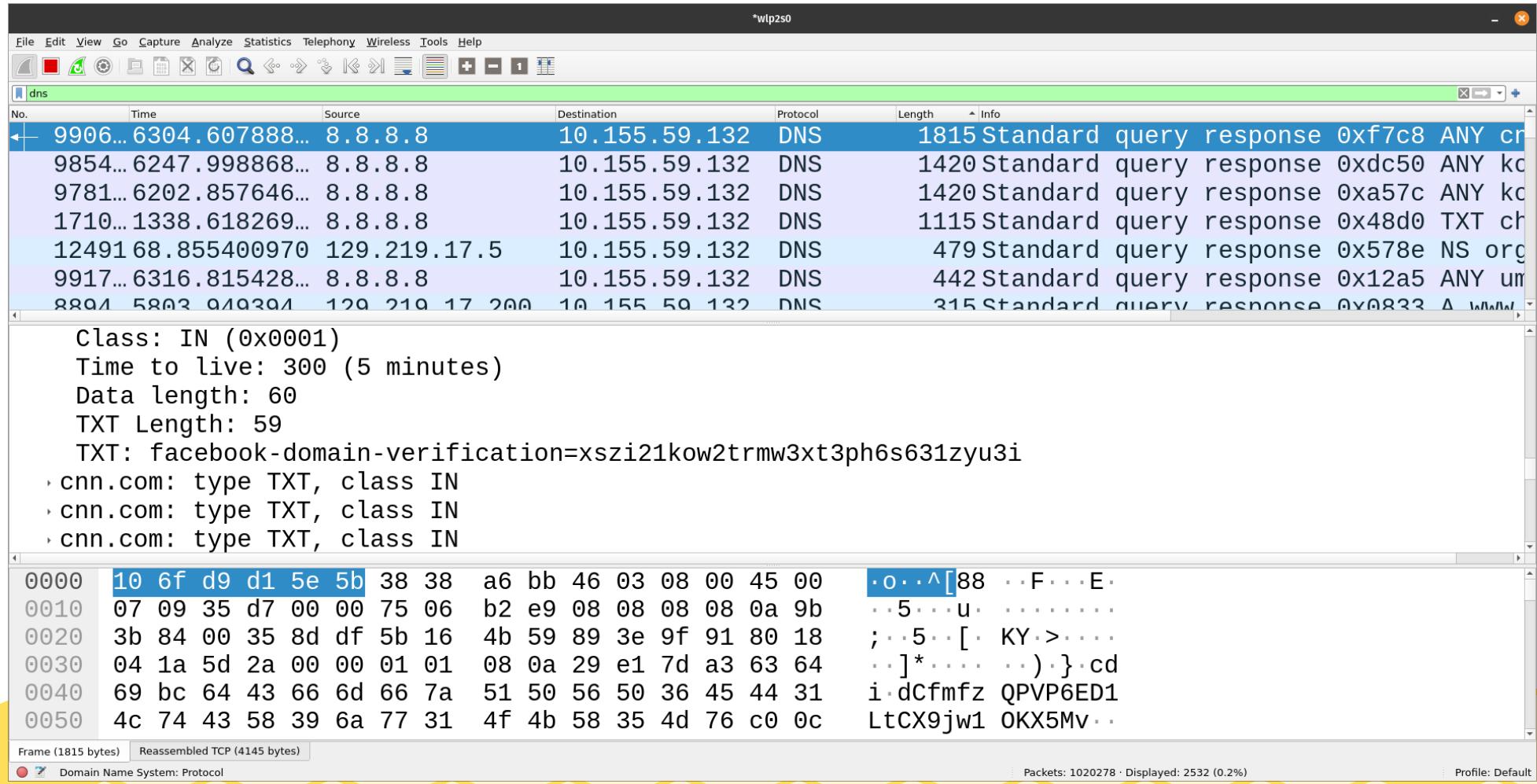
Does bailiwick checking save us?

No! The only “authentication” is the source port and TXID!

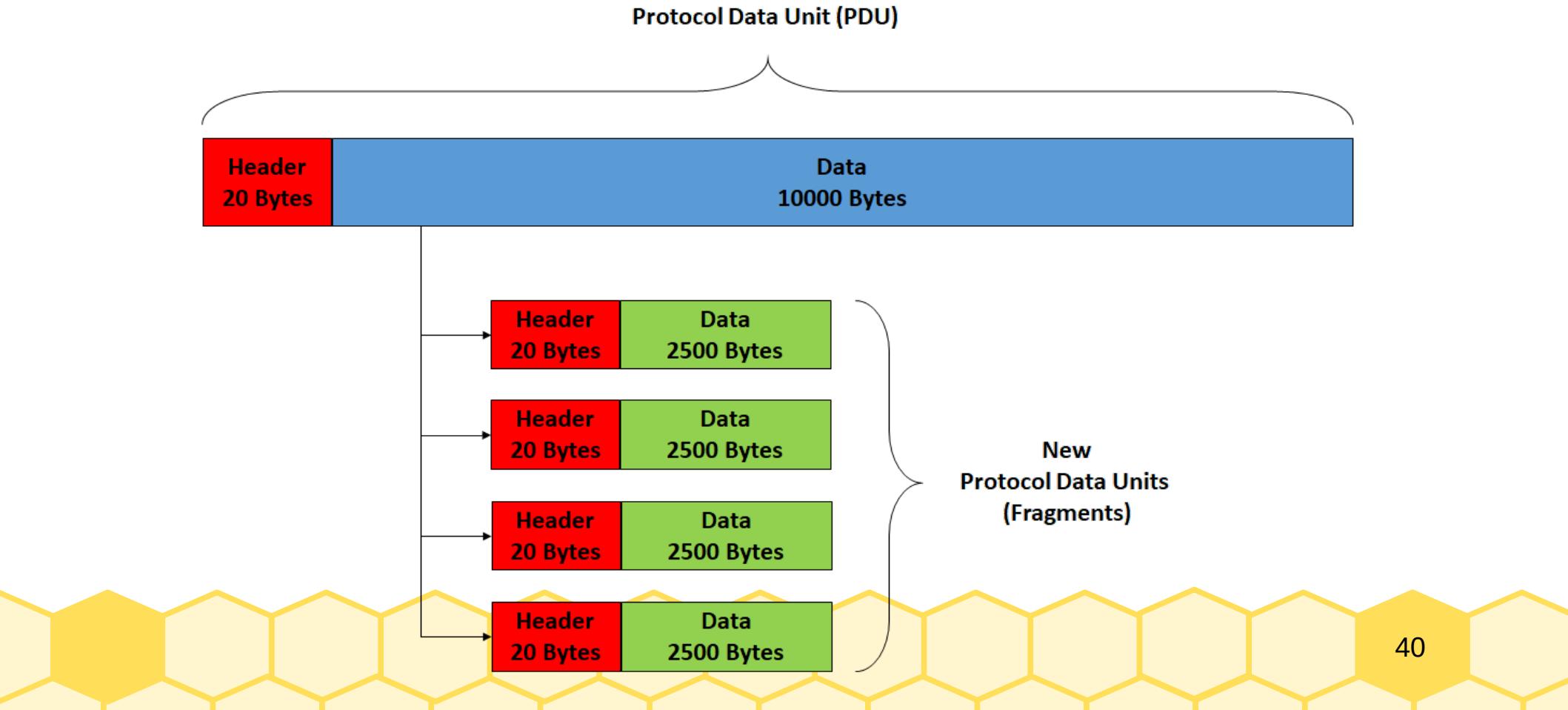
Solution to the Kaminsky attack... OSes now randomize source ports.

(Also, some other stuff, like 0x20 encoding:
BrEAkPoinTiNGBaD.COM)

But, what if we didn't have to guess the TXID or source port?


```
; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> cnn.com any @8.8.8.8
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61262
;; flags: qr rd ra; QUERY: 1, ANSWER: 74, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;cnn.com.                      IN      ANY


;; ANSWER SECTION:
cnn.com.          60      IN      A      151.101.195.5
cnn.com.          60      IN      A      151.101.131.5
cnn.com.          60      IN      A      151.101.67.5
cnn.com.          60      IN      A      151.101.3.5
cnn.com.        21600    IN      NS     ns-378.awsdns-47.com.
cnn.com.        21600    IN      NS     ns-1652.awsdns-14.co.uk.
cnn.com.        21600    IN      NS     ns-587.awsdns-09.net.
cnn.com.        21600    IN      NS     ns-1242.awsdns-27.org.
cnn.com.          900     IN      SOA    ns-1652.awsdns-14.co.uk. awsdns-
hostmaster.amazon.com. 1 7200 900 1209600 86400
:[]
```

cnn.com.	21600	IN	NS	ns-587.awsdns-09.net.
cnn.com.	21600	IN	NS	ns-1242.awsdns-27.org.
cnn.com.	900	IN	SOA	ns-1652.awsdns-14.co.uk. awsdns-
hostmaster.amazon.com.	1	7200	900	1209600 86400
cnn.com.	300	IN	MX	10 cnn-com.mail.protection.outlo
ok.com.				
cnn.com.	300	IN	TXT	"MS=ms66433104"
cnn.com.	300	IN	TXT	"228426766-4422034"
cnn.com.	300	IN	TXT	"openai-domain-verification=dv-y
GIc9wI1iK7uFqtmBqEp94Xk"				
cnn.com.	300	IN	TXT	"126953328-4422040"
cnn.com.	300	IN	TXT	"adobe-sign-verification=c3dc321
7f76deddcb413a23e4e665fad"				
cnn.com.	300	IN	TXT	"_globalsign-domain-verification
=2lybn8Z2GKCTHNehPEREKdz_jh5SahShpw0eRqCWjl"				
cnn.com.	300	IN	TXT	"2baPGrmeo+RwsWdIdq/gIVSEWNb4tC9
mLGQu0j4l/mduqhm06T+V9vNLXsauLyH9FwMZJSRHvj/YHGK0VWRylw=="				
cnn.com.	300	IN	TXT	"facebook-domain-verification=xs
zi21kow2trmw3xt3ph6s631zyu3i"				
cnn.com.	300	IN	TXT	"lucidlink-verification=B9TYHWKA
XAA93NQ61ST71E7NW8"				
cnn.com.	300	IN	TXT	"133461244-4422058"
cnn.com.	300	IN	TXT	"667921863-4422007"
:				

Deprecated around 2019 because of RFC 8482?

https://en.wikipedia.org/wiki/IP_fragmentation

Destination	Info	Protocol	Length
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com	DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS	DNS	107

```

Frame 73: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface wlx6c5ab00ee69e, interface
Ethernet II, Src: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e), Dst: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7)
Internet Protocol Version 4, Src: 10.42.0.1, Dst: 10.42.0.14
User Datagram Protocol, Src Port: 53, Dst Port: 63826
Source Port: 53
Destination Port: 63826

```

0020	00	0e	00	35	f9	52	00	49	a3	4c	2b	9f	81	80	00	01	..	5	R	I	.L+	..	
0030	00	02	00	00	00	00	03	68	6c	78	07	6d	65	69	74	75	h	lx	.meitu	
0040	61	6e	03	63	6f	6d	00	00	01	00	01	c0	0c	00	01	00	an	com
0050	01	00	00	00	78	00	04	65	ec	09	69	c0	0c	00	01	00	x	e	..	i	..
0060	01	00	00	00	78	00	04	65	ec	41	22						x	e	..	A	"

File	Edit	View	Go	Capture	Analyze	Statistics	Telephony	Wireless	Tools	Help	meituan.pcap	
udp.stream eq 2											Protocol	Length
Destination	Info											
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com										DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS											107

```

Frame 73: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface wlx6c5ab00ee69e, interface name wlx6c5ab00ee69e, timestamped
Ethernet II, Src: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e), Dst: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7)
Internet Protocol Version 4, Src: 10.42.0.1, Dst: 10.42.0.14
User Datagram Protocol, Src Port: 53, Dst Port: 63826
Domain Name System (response)

```

Transaction ID: 0x2b9f

0020	00	0e	00	35	f9	52	00	49	a3	4c	2b	9f	81	80	00	01	..	5	R	I	.L	+	..
0030	00	02	00	00	00	03	68	6c	78	07	6d	65	69	74	75	h	lx	meitu		
0040	61	6e	03	63	6f	6d	00	00	01	00	01	c0	0c	00	01	00	an	com
0050	01	00	00	00	78	00	04	65	ec	09	69	c0	0c	00	01	00	x	e	..	i	..
0060	01	00	00	00	78	00	04	65	ec	41	22						x	e	..	A	"

<https://arxiv.org/pdf/1205.4011>

Fragmentation Considered Poisonous

Amir Herzberg[†] and Haya Shulman[‡]

Dept. of Computer Science, Bar Ilan University

[†]*amir.herzberg@gmail.com*, [‡]*haya.shulman@gmail.com*

Destination	Info	Protocol	Length
10.42.0.1	Standard query 0x2b9f A hlx.meituan.com	DNS	75
10.42.0.14	Standard query response 0x2b9f A hlx.meituan.com A 101.236.9.105 A... DNS	DNS	107

Frame 73: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface wlx6c5ab00ee69e, interface name: wlx6c5ab00ee69e, timestamp: 2023-06-15T14:23:45.000Z (local), length: 107 bytes (856 bits)

• Ethernet II, Src: TP-Link_0e:e6:9e (6c:5a:b0:0e:e6:9e), Dst: d2:4c:cf:57:fe:a7 (d2:4c:cf:57:fe:a7)

• Internet Protocol Version 4, Src: 10.42.0.1, Dst: 10.42.0.14

 0100 = Version: 4

 0101 = Header Length: 20 bytes (5)

• Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

 Total Length: 93

 Identification: 0x1d44 (7492)

• Flags: 0x40, Don't fragment

 ...0 0000 0000 0000 = Fragment Offset: 0

0010	00	5d	1d	44	40	00	40	11	08	ea	0a	2a	00	01	0a	2a	·]·D@·@·....*....*
0020	00	0e	00	35	f9	52	00	49	a3	4c	2b	9f	81	80	00	01	··5·R·I·L+....
0030	00	02	00	00	00	03	68	6c	78	07	6d	65	69	74	75h lx.meitu	
0040	61	6e	03	63	6f	6d	00	00	01	00	01	c0	0c	00	01	00	an.com....
0050	01	00	00	00	78	00	04	65	ec	09	69	c0	0c	00	01	00x..e..i....

IPIDs

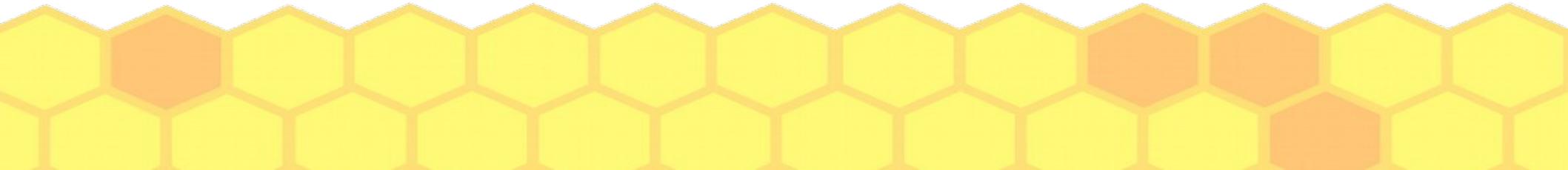
- Used to identify fragments and put them back together
 - Should never be repeated for a given destination
- Different strategies
 - Globally incrementing counter that wraps around at 2^{16}
 - Pick at random without replacement
 - Per-destination
 - Bucket-based
 - Can add noise

How much entropy?

- Globally incrementing counter?
- Pick at random?

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

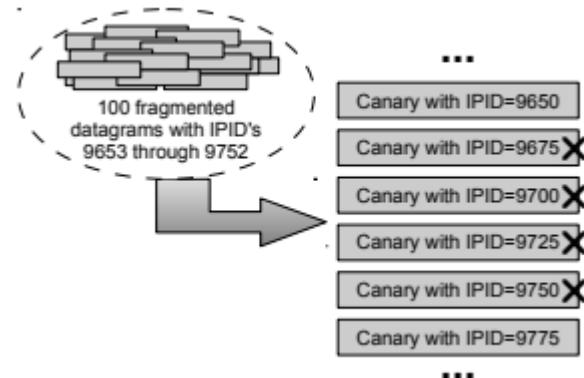
$$65535 * \left(\frac{1}{65535} \right) \log_2 \left(\frac{1}{65535} \right)$$



15.9999779860527360444979834869216776403570...

47

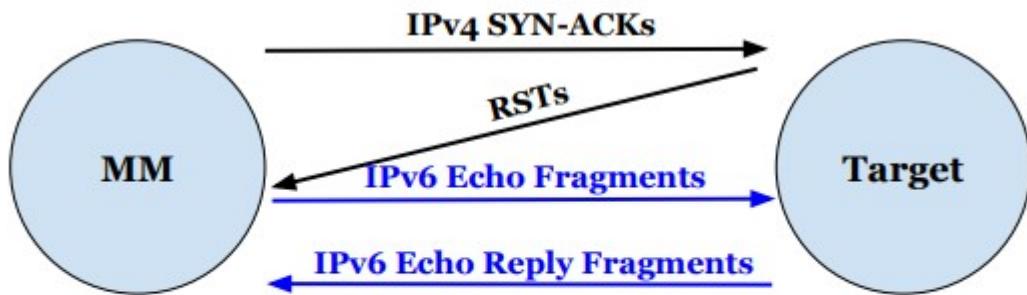
How much entropy?

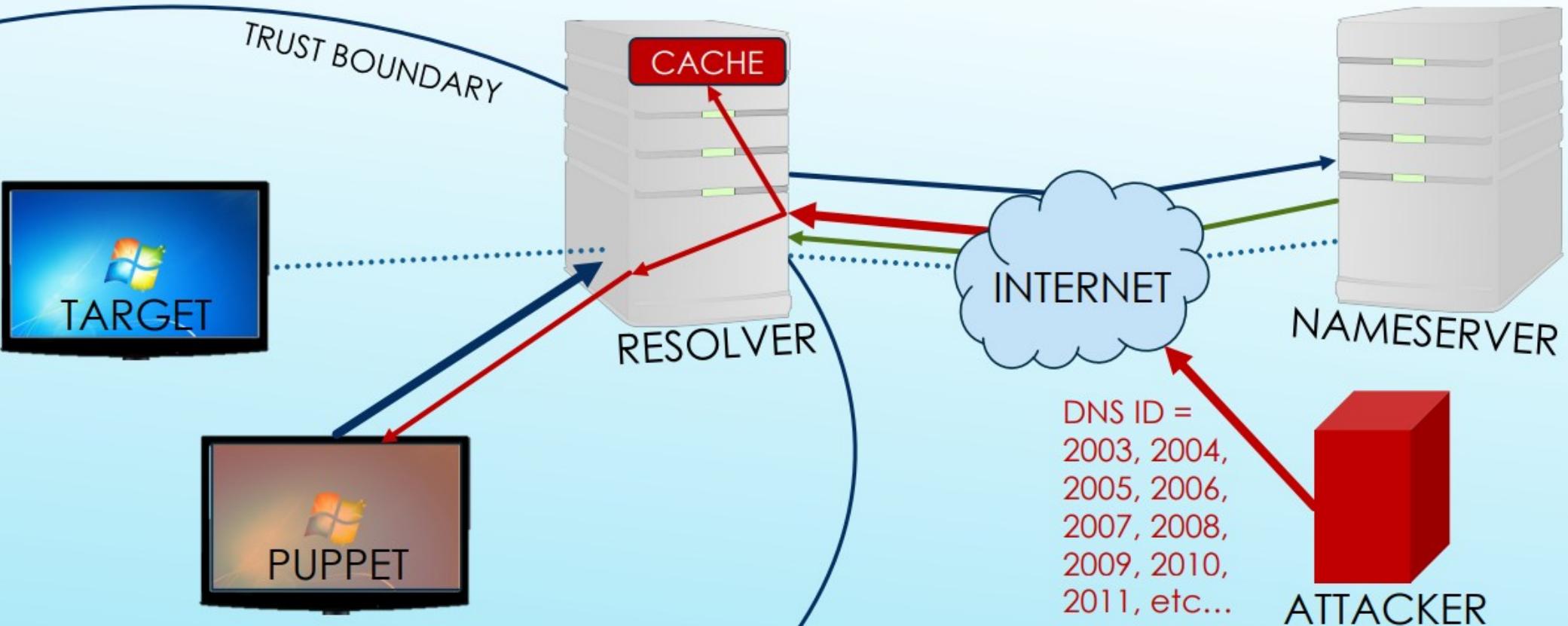

- Per-destination?
 - Think about a noisy server that is talking to other clients
- Bucket-based?

Counting Packets Sent Between Arbitrary Internet Hosts

Jeffrey Knockel
*Dept. of Computer Science
University of New Mexico
jeffk@cs.unm.edu*

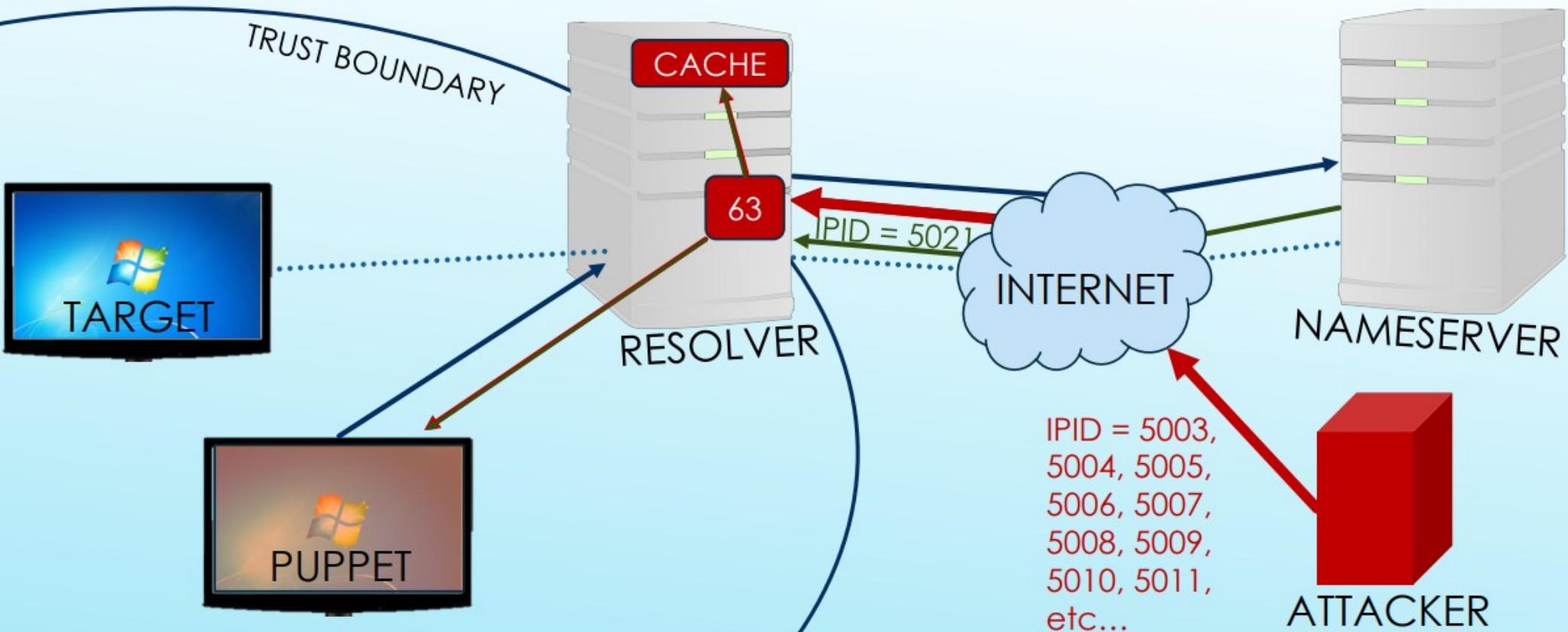
Jedidiah R. Crandall
*Dept. of Computer Science
University of New Mexico
crandall@cs.unm.edu*



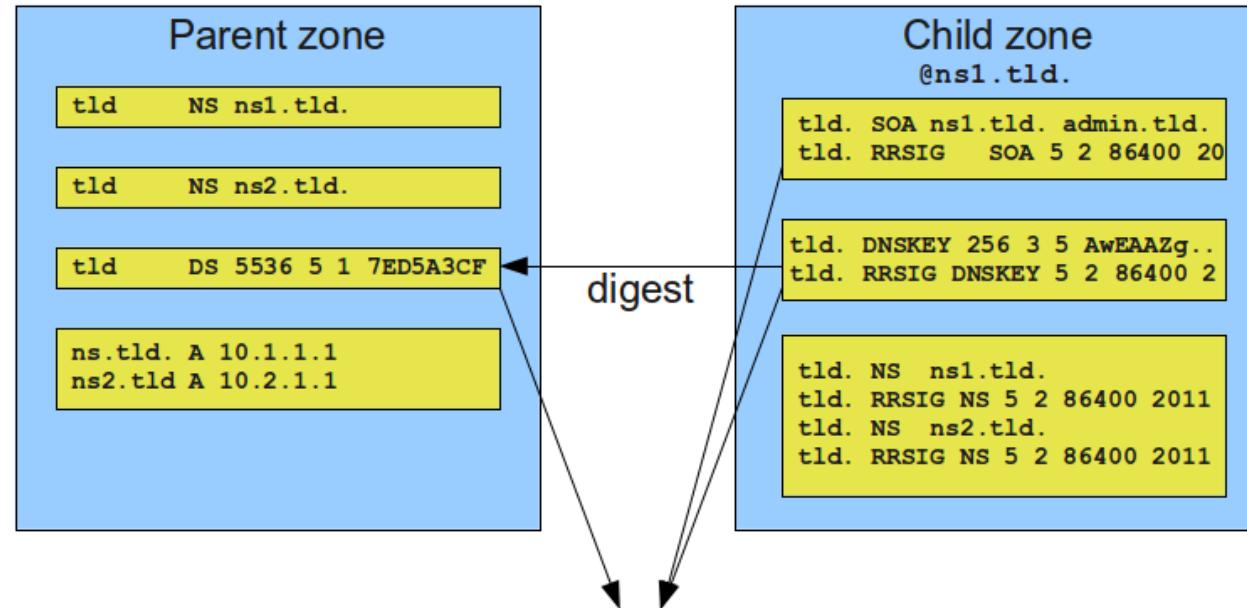

Fig. 3. IPv4 and IPv6 alias resolution.

Fragmentation attacks on Linux resolvers

- <https://media.defcon.org/DEF%20CON%202027/DEF%20CON%2027%20presentations/DEFCON-27-Travis-Palmer-First-try-DNS-Cache-Poisoning-with-IPv4-and-IPv6-Fragmentation.pdf>


Kaminsky's attack, assuming source port is completely predictable and you only need to guess the TXID...

IDEAL POISONING SCENARIO


Fragmentation attacks, only need to guess IPID
(TXID and source port are in existing fragment
from the DNS server)...

IDEAL POISONING SCENARIO

A real solution would be a real form of authentication, like signatures...

DNSSEC

<https://ru.wikipedia.org/wiki/DNSSEC>

jedi@tortuga:~


```
jedi@tortuga:~$ dig fraunhofer.de @8.8.8.8 +dnssec | head -n 18
```

```
; <>> DiG 9.18.39-0ubuntu0.22.04.2-Ubuntu <>> fraunhofer.de @8.8.8.8 +dnssec
;; global options: +cmd
```

```
;; Got answer:
```

```
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29859
```

```
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1
```

```
;; OPT PSEUDOSECTION:
```

```
; EDNS: version: 0, flags: do; udp: 512
```

```
;; QUESTION SECTION:
```

```
;fraunhofer.de.           IN      A
```

```
;; ANSWER SECTION:
```

```
fraunhofer.de.      3593      IN      A      192.102.162.236
```

```
fraunhofer.de.      3593      IN      RRSIG   A 8 2 3600 20260227143958 202601
```

```
28135244 57189 fraunhofer.de. SHIGBs5CC6hV+DigBXTs0wbBb2gQlnxLVhsVnJxU8Fd6xT/Pjl
zXL1zz r2H2QdP/rgmL60ITTC/hGvfsC8QF601h5oVqSyQjwEMnKS46GXP2VHH4 4MvQAUMUABRN63t+
pqSlldpuYV00/2gjV6IDF09ne+qCj0zxVraA4e2aY 3Po=
```

```
;; Query time: 20 msec
```

```
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
```

```
jedi@tortuga:~$
```

More info

- <http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html>