
 1

Birthday paradox, finite fields, Fermat’s Little
Theorem, fast modular exponentiation

CSE 548 Spring 2026
jedimaestro@asu.edu

Or, all the math you need for exam 1 other than FFTs

Birthday paradox...

Birthday
Attacks on DNS

● https://www.kb.cert.org/vuls/id/457875

● 2002

https://www.kb.cert.org/vuls/id/457875

 4

https://en.wikipedia.org/wiki/Birthday_attack

https://en.wikipedia.org/wiki/Birthday_attack

 5

 6

 7

 8

 9

Finite fields...

https://en.wikipedia.org/wiki/%C3%89variste_Galois

https://en.wikipedia.
org/wiki/Quadratic_e
quation

https://en.wikipedia.
org/wiki/Cubic_equa
tion

https://en.wikipedia.org/wiki/%C3%89variste_Galois
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Quadratic_equation
https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Cubic_equation

What is a field?

● “In mathematics, a field is a set on which addition, subtraction,
multiplication, and division are defined and behave as the corresponding
operations on rational and real numbers do.”

--Wikipedia

● In cryptography, we often want to “undo things” or get the same result two
different ways
– Zmap will also use this trick

● On digital computers the math you learned in grade school is not good
enough
– Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
– Now the decryption needs the inverse operation. Crap!
– 1/3 is not easy to deal with (not even in floating point or fixed point)

Field

● Commutative
a + b = b + a

a * b = b * a

● Associative
(a + b) + c = a + (b + c)

(a * b) * c = a * (b * c)

● Identity
0 != 1, a + 0 = a, a * 1 = a

● Inverse
a + -a = 0

a * a-1 = 1

● Distributive
a * (b + c) = (a * b) + (a * c)

Arithmetic modulo a prime is a finite field

6 + 4 = 3 (mod 7)
3 – 6 = 4 (mod 7)
5 * 2 = 3 (mod 7)
5 * 3 = 1 (mod 7)

3 * 5-1 = 3 * 3 = 2 (mod 7)

This is called GF(7)

GF(2)

0 + 0 = 0 (mod 2)
0 + 1 = 1 (mod 2)
1 + 0 = 1 (mod 2)
1 + 1 = 0 (mod 2)

How to subtract?
Where have you seen this before?

GF(2)

0 * 0 = 0 (mod 2)
0 * 1 = 0 (mod 2)
1 * 0 = 0 (mod 2)
1 * 1 = 1 (mod 2)

Where have you seen this before?

GF(2) XOR
● K + K = 0
● (P + K) + K = P
● (A + K) + (B + K) = A + B
● 0 + K = K

● K K = 0⨁
● (P K) K = P⨁ ⨁
● (A K) (B K) = A ⨁ ⨁ ⨁ B⨁
● 0 K = K⨁

How to use GF(2) to achieve what we want?

● Want to define a field over 2k possibilities for a k-bit number
● 2 is prime, all other powers of 2 are not

– Need to use irreducible polynomials

https://jedcrandall.github.io/courses/
cse548spring2024/miniaesspec.pdf

This is how to show your work on Exam 1

 24

Fermat’s Little Theorem...

 25

ap mod p = a (mod p)
ap-1 mod p = 1 (mod p)
ap-2 mod p = a-1 (mod p)

 26

https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/

https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/

 27

Finite fields mod p
● Multiplicative inverse is just ep-2

● So why study the Extended Euclidean algorithm (later, for Exam
2)? Because we can’t do signatures with Diffie-Hellman, since
Fermat’s little theorem is an easy way to find multiplicative inverses.

● Preview: same is true of any finite field, so RSA uses ring theory:
– n = pq where p and q are prime, is a composite number
– φ(n) = (p – 1)(q – 1) is Euler’s totient function, which counts the

numbers less than n that are co-prime to n

Fast modular exponentiation via repeated
squaring...

Multiplication is polynomial time in number
of digits (O(n2) or O(n log n))

Modular exponentiation

153189 (mod 251)

Naive way: multiply 153 times itself 189 times.
Won’t work for, e.g., 2048-bit numbers in the

exponent

Better way (all mod 251)
1530 = 1
1531 = 153
1532 = 66
1534 = 89

1538 = 140
15316 = 22
15332 = 233
15364 = 73
153128 = 58

1. Repeated squaring

2. Don’t forget the modulus

Better way
● 189 in binary is 0b10111101
● 189 = 1*27 + 0*26 + 1*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*20

● 153189 (mod 251) = 153(128+0+32+16+8+4+0+1) (mod 251)
 = 153128 * 15332 * 15316 * 1538 * 1534 * 1531 (mod 251)

 = 58 * 233 * 22 * 140 * 89 * 153 (mod 251)

 = 73

153189 = 73 (mod 251)
189 = log153 73 (mod 251)

153??? = 73 (mod 251)
??? = log153 73 (mod 251)

This is called the discrete logarithm, and there is no known algorithm for
solving it in the general case that is polynomial in the number of digits.

153189 = 73 (mod 251)
15364 = 73 (mod 251)

153189 ≡ 73 (mod 251)
15364 ≡ 73 (mod 251)

153189 ≡ 15364 ≡ 73 (mod 251)

An example…
● 317 mod 31
● 17 = 16 + 1
● 16 = 24 , (((32)2)2)2=316

● All mod 31…
– 31=3, 32=9, …

An example…
● 317 mod 31
● 17 = 16 + 1
● 16 = 24 , (((32)2)2)2=316

● All mod 31…
– 31=3, 32=9, 34=19, …

An example…
● 317 mod 31
● 17 = 16 + 1
● 16 = 24 , (((32)2)2)2=316

● All mod 31…
– 31=3, 32=9, 34=19, 38=20, …

An example…
● 317 mod 31
● 17 = 16 + 1
● 16 = 24 , (((32)2)2)2=316

● All mod 31…
– 31=3, 32=9, 34=19, 38=20, 316=28…

An example…
● 317 mod 31 = 31631 mod 31 = 22
● 17 = 16 + 1
● 16 = 24 , (((32)2)2)2=316

● All mod 31…
– 31=3, 32=9, 34=19, 38=20, 316=28…

17 in binary is 0b10001

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

