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Birthday paradox...
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Table 1: Number of packets required to reach 50% success probability for various numbers of open

queries


https://www.kb.cert.org/vuls/id/457875

(1 ) Young JPE‘['E"E’E Anders
IIIII.,mmhanS»va*||:b.’r.'4 _ Oct 17
Feb 7
Swigert
AugSG
Stafford
Sep 17
Shepard
Mov 18
Scott
Jun 6
Schmitt
Jul 3
Roosa
Aug 16
Mitchell
Sep 17
Mamn;;h““h-h_
L Lowvell Haize

Mar 25 ,I:I;";";‘.‘, Nov 14

(:2) good
Armsirong gooD
Aug 5 goOd
Bean
Mar 15 gooD
good
Borman
Mar 14 gooD
good
Cernan gooD
Mar 14 Good
GooD
, Collins
Ot 31 GoOd
Go0D
Conrad GOod
Jun 2 GOoD
! G0ood
Duke
Oct 3 GOOD
Evans
Mow 10
Gordon
Oct 5

(77) »
(5a)-
(29) -
(15)-
(f9)-
(cd)-
(ce)
(69)
(c9)
(99) <
(06) -
(d6)
(11)-
(99)

- (b5)
- (87)
- (61)
(c4)
-(93)
(16)
+(87)
- (d4)
*(50)
‘(f2)
- (b7)
*(85)
*(33)
s (1a)

(1a)==
(27)

“(22)
(ad)

evil
evil
evIil
evIL
evil
eVilL
eVIl
eVIL
Evil
Evil
EvI1l
EvIL
Evil
EVil
EVI1
EVIL


https://en.wikipedia.org/wiki/Birthday_attack
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This process can be generalized to a group of n people, where p(n) is the probability of at least two of the n people sharing a
birthday. It is easier to first calculate the probability p(n) that all n birthdays are different. According to the pigeonhole principle, p(n) is
zero when n > 365. When n < 365:

1 2 n—1
5(n) = 1 - — 2 )y xeex [1-
p(n) ”( 365) . (1 365) S, ( 365 )

The Taylor series expansion of the exponential function (the constant
e~ 2.718 281 828)

2
r __ _ ..
e =1+x+ o1 +
provides a first-order approximation for €* for |z | < 1:

e’ =~ 1+ z.
To apply this approximation to the first expression derived fan(n), set

Thus,

___a
X = 7365

[

~a/365 . 1 _ @
€ 365



Then, replace a with non-negative integers for each term in the formula of E(n]
until @ = n — 1, for example, when a = 1,
1
365
The first expression derived for E(n) can be approximated as

p(n) ~r 1. e 1/365 . =2/365 o~ (n-1)/365

E—],.l"3ﬁ5 ~1—

e (1424 - +(n-1)) /365

mn{n—1),2 n{n-1)

— e 365 — g 730

Therefore, ﬂ-l[ﬂ—lj

n(n—1}) — o —
p(n)=1—-pn)=1—e ™0 . p(ﬂj d) - ]_ e 2d
An even coarser approximation is given by

n?
p(n] ~1-— e_ﬁi



A good rule of thumb which can be used for mental calculation is the relation

H—E

p(ﬂ, d) ~ ﬂ

which can also be written as

n = ,/2d x p(n)

which works well for probabilities less than or equal to % In these equations, d is the number of days in a year.

For instance, to estimate the number of people required for a % chance of a shared birthday, we get

n /2% 365 x 5 = v/365 ~ 19

Which is not too far from the correct answer of 23.



Finite fields...






https://en.wikipedia.org/wiki/%C3%89variste_Galois
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What is a field?

“In mathematics, a field is a set on which addition, subtraction,
multiplication, and division are defined and behave as the corresponding
operations on rational and real numbers do.”

--Wikipedia
In cryptography, we often want to “undo things” or get the same result two
different ways
- Zmap will also use this trick
On digital computers the math you learned in grade school is not good
enough
- Suppose we want to multiply by a plaintext, and the plaintext is 3. Great!
- Now the decryption needs the inverse operation. Crap!

- 1/3 is not easy to deal with (not even in floating point or fixed point)
e m—




Field

- Commutative * |nverse
atb=b+a at+-a=0
a*b=b*a a*al=1

» Associative  Distributive
(a@a+b)+c=a+(b+cC) a*(b+c)=(@*b)+ (a*c)
(@*b)*c=a*(b*c)

* |dentity

Ol=1,a+0=a,a*1=a




Arithmetic modulo a prime is a finite field

6+4=3(mod?7)
3—-6=4(mod 7)
5*2=3(mod 7)
5*3=1(mod 7)
3*51=3*3=2(mod 7)

This Is called GF(7)



GF(2)

0+ 0=0(mod 2)
O+1=1(mod 2)
1+0=1(mod 2)
1+1=0(mod 2)

How to subtract?
Where have you seen this before?



GF(2)

0*0=0(mod 2)
0*1=0(mod 2)
1*0=0(mod 2)
1*1=1(mod 2)

Where have you seen this before?



GF(2) XOR

« K+K=0 c KQK=0

c P+K)+K=P c PEKPK=P
*c (A+K)+(B+K)=A+B « AGK @DBDPK =AEPB

e D+ K=K 'O@K:K



S

How to use GF(2) to achieve what we want?
[ N

» Want to define a field over 2% possibilities for a k-bit number

* 2 1s prime, all other powers of 2 are not
- Need to use irreducible polynomials




https://jedcrandall.github.io/courses/
cse548spring2024/miniaesspec.pdf

Published in Cryptologia, XXVI (4), 2002,
Mini Advanced Encryption Standard

(Mini-AES):
A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan




2.1  The Finite Field GF(2*)

The nibbles of Mini-AES can be thought of as elements in the finite field GF(2"). Finite
fields have the special property that operations (+,—, ¥ and +) on the field elements always

cause the result to be also in the field. Consider a nibble n = (ns, ns, ny, ng) where n; £ {0,1}.
Then, this nibble can be represented as a polynomial with binary coefficients i.e having

values in the set {0,1}:

N=mX +MX +0m X+
Example 1
(Given a nibble, nrhen this can be represented as
n=1x+0x"+1x+1=x"+x+1

Note that when an element of GF(2%) is represented in polynomial form, the resulting
polynomial would have a degree of at most 3.




Z

2.2 Addition in GF(2")

When we represent elements of GF(2") as polynomials with coefficients in {0,1}, then
addition of two such elements is simply addition of the coefficients of the two polynomials.
Since the coefficients have values in {0,1}, then the addition of the coefficients is just modulo
2 addition or exclusive-OR denoted by the symbol @. Hence, for the rest of this paper, the
symbaols + and @ are used interchangeably to denote addition of two elements in GF(2").

Example 2
Given two nibbles, n = 1011 and m = 0111, then the sum, n + m= 1011 + 0111 = 1100 orin
polynomial notation:

n+m=(x+x+1)+(xX+x+1)=x"+x




2.3 Multiplication in GF(2") ;é

Multiplication of two elements of GF(2") can be done by simply multiplying the two
polynomials. However, the product would be a polynomial with a degree possibly higher
than 3.

Example 3
Given two nibbles, n= 1011 and m = 0111, then the product is:
(XK'+x+ D) +x+ D)= +xX+x+x+xX+x+x +x+1
=xX"+x +1

In order to ensure that the result of the multiplication is still within the field GF(2*), it must be
reduced by division with an irreducible polynomial of degree 4, the remainder of which will
be taken as the final result. An irreducible polynomial is analogous to a prime number in
arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself.
There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

m(x)=x +x+1




\
Example 4 ;&

Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(2"),

called the *product of n x m modulo m(x)" and denoted as &, is:
(X' +x+1)@ (X +x+1) =x'+x" + 1modulox’+x+1
2
=X
This is because:

X+ 1 (quotient)
XHx+1)x0+xt+1

+ :{5+}{E+x

4 z
X +x " +x+1
+ x* + x+1

X (remainder)

Note that since the coefficients of the polynomials are in {0,1}, then addition is simply

exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own
inverse.




Example 4

Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(2"),
called the “product of n x m modulo m(x)" and denoted as &, is:

(X' +x+1)@ (X +x+1) =x'+x" + 1modulox’+x+1

This is because:
This is how to show your work on Exam 1

X+ 1 (quotient)
4 5 4
X +J-:+1,Jx +x +1
+ :.;"'+x2+_1.;
4 z
X +x " +x+1
+ x* + x+1

X (remainder)

Note that since the coefficients ol "Wegpolynomials are in {0,1} L
exclusive-OR and hence subtraction is alst jve-OR sj

, then addj 15 simply
inverse.

o-0R is its own

Z



Fermat’'s Little Theorem...




a” mod p = a (mod p)
a1t mod p =1 (mod p)
a*< mod p = a* (mod p)

T LI LI =1



https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/
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We already know there are 4? — ; strands with at least two colors; since we can put them in groups

of p, one for each necklace of at least two colors, o7 — ¢ must be evenly divisible by p. QED!
Y D D Y Y Y Y
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https://mathlesstraveled.wordpress.com/2017/12/12/fermats-little-theorem-proof-by-necklaces/

Finite fields mod p

* Multiplicative inverse Is just er~

* So why study the Extended Euclidean algorithm (later, for Exam
2)? Because we can’t do signatures with Diffie-Hellman, since
Fermat’s little theorem is an easy way to find multiplicative inverses.

* Preview: same is true of any finite field, so RSA uses ring theory:

- n = pq where p and g are prime, is a composite number

- @(n) = (p — 1)(g — 1) is Euler’s totient function, which counts the
numbers less than n that are co-prime to n

T LI =1



Fast modular exponentiation via repeated
sguaring...



Multiplication is polynomial time in number
of digits (O(n?) or O(n log n))

468..
1 3754
276
0
316

—

~=>0
b~

1
1



Modular exponentiation

153%%° (mod 251)

Naive way: multiply 153 times itself 189 times.
Won't work for, e.g., 2048-bit numbers In the
exponent



Better way (all mod 251)

153°=1 153° = 140
153* = 153 153" =22
153% = 66 15332 = 233
1534 =89 153% =173

1531%% = 58



1. Repeated squaring

2. Don’t forget the modulus



Better way
* 189 in binary is 0b10111101

o 189 =1%27+ 0*2° + 1*2° + 1*24 + 1*23 + 1*22 + 0*2! + 1*2°

e 15318 (mod 251) = 153(128+0+32+16+8+4+0+1) (mod 257)
= 15318* 15332* 153 * 1538 * 153** 153 (mod 251)
=58 *233*22* 140 * 89 * 153 (mod 251)
=73



& WolframAlpha e

58 *233 * 22 * 140 * 89 * 153 (mod 251) o8
X NATURAL LANGUAGE | f§5 MATH INPUT B EXTENDED KEYBOARD  ::3 EXAMPLES % UPLOAD 24 RANDOM
Input

(58 <233 « 22 - 140 < 89 ~ 153) mod 251

Result

73



¥ WolframAlpha e

(153189) mod 251 _
¥ NATURAL LANGUAGE | f7a MATH INPUT [ EXTENDED KEYBOARD 33 EXAMPLES # UPLOAD >4 RANDOM
Input
153'%? mod 251
Result

73



15319 = 73 (mod 251)
189 = |Og153 73 (mOd 251)



153777 = 73 (mod 251)
P77 = |0g153 73 (mOd 251)

This is called the discrete logarithm, and there is no known algorithm for
solving it in the general case that is polynomial in the number of digits.



15319 = 73 (mod 251)
153% = 73 (mod 251)



15319 = 73 (mod 251)
153% = 73 (mod 251)



153189 =
= 153% =
= 73 (mod 251)



An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, ...



Undo

81 mod 31

00

- -

81 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, 3*=19, ...



Undo

81 mod 31

19x19

361 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 3%=9, 3*=19, 38=20, ...



Undo

361 mod 31

20x=20

400 mod 31

mod




An example...

e 3" mod 31
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 3%=9, 3%=19, 38=20, 31°=28...



Undo

400 mod 31

28x=3

84 mod 31

mod




An example...

e 3 mod 31 = 33 mod 31 =22
e 17=16+1
¢ 16 =24, (((32)2)2)2:316
 All mod 31...
- 31=3, 32=9, 34=19, 38=20, 31°=28...



17 in binary is 0b10001
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