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– We provide a detailed analysis and evaluation of the

attack, analyze possible sources of error, and discuss

possible mitigations.

A key novelty of the side-channel attack described in

this paper, compared to past work, is that it does not ex-

haust any global resource. To the best of our knowledge,

there are only two existing side-channel attacks in the

literature where the existence of a TCP/IP connection

could be inferred: Knockel and Crandall [21] where the

global fragment cache was filled and Cao et al. [7] where

a global challenge ACK rate limit was reached. Note

that we exclude attacks that require malicious code on

the victim machine or an attacker machine behind the

same NAT as the victim [10, 18–20, 29]. Our attack uses

a per-destination (i.e., not global) duplicate ACK limit

for one non-default corner case that we encountered,

but is otherwise based on inferring which resource is

being used rather than exhausting a specific resource.

This is a major conceptual difference that challenges

the notion that there is a direct one-to-one connection

between shared, limited resources and non-trivial net-

work side-channels. While past side-channels have had

the property of not exhausting global shared, limited

resources, such as Antirez’s idle scan [4] for detecting

open ports, to date such side-channels have been rel-

atively trivial and could not reveal information about

active connections. What the attack presented in this

paper demonstrates is that simply enumerating glob-

ally shared resources (rate limits, buffers, caches, etc.)

and then considering each in isolation is not sufficient

for enumerating all possible side-channels that can be

used to infer a connection.

The rest of the paper is structured as follows: Sec-

tion 2 discusses scenarios that motivate our work. Sec-

tion 3 reviews what an IPID value is, how the Linux

kernel generates IPIDs, what a challenge ACK is, and

how the Linux kernel handles challenge ACKs. Section 4

discusses the methods for using IPIDs and challenge

ACKs as side-channels to detect the presence of an active

TCP connection. Section 5 describes our experimental

methodology. Then, we discuss our results in testing the

attack in Section 6. In Section 7 we discuss the applica-

bility of the attack, the challenges it faces “in the wild”,

common sources of error, and possible mitigations. We

discuss related work in Section 8 and finish with our

conclusions in Section 9.

2 Motivation

One common assumption made by many privacy tools

using the TCP protocol is that information about the

state of an existing connection does not leak outside of

the connection itself. This includes information about

whether or not a connection exists. Many privacy and

censorship circumvention tools rely on this to ensure

that this information could only be discovered by an

on-path attacker. If an attacker were able to detect the

existence of a connection between a client and a cir-

cumvention tool off-path it could allow the attacker the

possibility of deanonymizing a client, detecting a hidden

service, or other attack vectors.

One scenario where the ability to detect off-path

connections is useful is the case of a user accessing a

sensitive website via a Tor [12] bridge, which is a type

of relay that is supposed to be unknown to the censor.

The attacker may suspect that the user is connecting to

a bridge and could try to confirm this suspicion. While

there has been evidence of nation-states using active

probing to identify such hidden machines [15], obfus-

cation protocols such as obfs4 [3] can be used to im-

pede such probing. Using an attack that could detect

an off-path TCP connection an attacker could attempt

to detect a TCP connection between a suspected Tor

bridge and a Tor directory server after a user opens

a connection to the Tor bridge. Since this would de-

tect the connection it would not require active probing

that could be impeded by obfs4 or similar mitigations.

Note that once the connection is open the distinction be-

tween client and server is interchangeable for the attack

we present. Note also that six out of 10 Tor directory

servers are dual stack [31] allowing an attacker to use

both IPv4 and IPv6 address when attempting to find

IPID hash collisions. As multiple IPv6 addresses are of-

ten assigned to a single machine or network, compared

to IPv4 addresses, these additional IPv6 addresses pro-

vide attackers with a much large pool of addresses that

could be used to find IPID hash collision. While the

attack we present focuses on a simple IPv4 only imple-

mentation, there are many different variations on the

attack to make it practical for any given application.

Generally, the attack we describe in this paper pro-

vides the attacker with a primitive for inferring the ex-

istence of connections off-path, which violates assump-

tions often made by privacy tools. We focus our exper-

imental methodology on understanding the base accu-

racy and speed of the attack on one client/server pair in

isolation, whereas a real attacker may have additional
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flexibility in carrying out the attack and can use an im-

proved implementation and/or different tradeoffs. Thus,

while the attack as presented in this paper assumes

that the connection persists for roughly two minutes,

and sometimes fails, we establish that the basic attack

primitive exists. A real attacker may implement it differ-

ently. For example, for the aforementioned application

of detecting Tor bridges the attacker may look for col-

lisions with any of a large set of Tor directory servers

and guard nodes, all of which Tor bridges are likely to

make persistent connections to, if they are heavily used.

The attacker may repeat results for identified connec-

tions to avoid false positives, and may be able to tolerate

false negatives because even if a Tor user’s connection

is interrupted only half the time or only after some use

their quality of service is diminished and they are likely

to use other services that are more reliable (such as

government-sponsored VPNs). And, even if the attack

is mitigated after some time (e.g., by filtering out the

attack traffic) the damage may already be done in terms

of user trust in a given tool’s availability.

In summary, this paper establishes a powerful at-

tack primitive that is flexible enough to be implemented

in a variety of attacker applications.

3 Background

The attack relies on side-channels in the Linux kernel’s

handling of IPv4 IPID values as a mix of global and

per-connection counters.

3.1 IPIDs

IPv4 packet headers contain a 16-bit identification field

known as the IP Identifier (IPID). During the course of

transmission it is possible that a given IPv4 packet may

be too large to transmit over a given link. In such cases

the packet can be broken in smaller packets known as

fragments, which all retain the original packet’s IPID.

Once these fragments reach their final destination, the

receiving machine uses the IPID value of each fragment

to determine how to correctly reassemble the fragments

to rebuild the initial IPv4 packet.

IPv6 packet headers do not contain an IPID field.

Instead, when they are fragmented an IPv6 extension

header is added containing a fragment ID value which

functions similarly to an IPv4 IPID value. Fragmenting

IPv6 packets is never performed by routers, with hosts

relying on Path MTU (PMTU) Discovery to determine

the largest packet size and only send packets of that size

or smaller. IPv4 can also use PMTU discovery but this

is not always enabled. In this paper we will focus on

IPv4 as it is always guaranteed to have an IPID field

present.

3.2 Linux Kernel IPv4 IPID Values

Early network stack implementations often used a global

IPID counter that was incremented for each packet sent

by the machine. However, work on idle scans and sim-

ilar techniques [4, 16, 17] exploited information side-

channels in the global IPID field to make measure-

ments of off-path machines. This led to the Linux kernel

moving to the adoption of per-destination IPID coun-

ters [13]. However, this technique has since been re-

moved in favor of a mixed approach. This new approach

consists of a set of 2048 separate IPID counters. Each

connection is assigned a counter to use based on a hash

of the source and destination IP addresses, the protocol

number of the IPv4 packet (e.g., TCP, UDP, etc.), and

a random value generated on system boot.

Research by Knockel and Crandall [21] showed

that simple, incrementing, per-destination IPID coun-

ters made it possible to use the IPID field to count the

number of packets sent between two machines for UDP

and ICMP, and infer the existence of a TCP connection,

completely off-path. Per-destination IPID counters were

already being phased out in an experimental version of

the kernel because they were stored in a global resource

called the inet peer table that could be exhausted [13],

leading to performance and security problems (because

when peers were evicted they reverted back to a pre-

dictable IPID). The global resource that Knockel and

Crandall exhausted to infer IPIDs off-path was the IP

fragment cache. In response to Knockel and Crandall

the 2048 separate IPID counters strategy that had been

under testing was released early, with the addition of

random noise [14] and hashing of source address and

protocol number (in addition to destination address and

network secret). These changes were made after some

discussion about if the new IPID strategy were more re-

sistant to off-path attacks than the old. This discussion

was initiated because of Knockel and Crandall’s disclo-

sure, but was about side-channels in the 2048 separate

counters and not the original vulnerability that Knockel

and Crandall disclosed [23]. For Linux’s current IPID

implementation, every time a packet is sent the cho-

sen counter (among the 2048) is then incremented by a
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393 void ip_select_ident_segs(...) {

...

398 if ((iph->frag_off & htons(IP_DF)) &&

!skb->ignore_df) {

...

404 if (sk && inet_sk(sk)->inet_daddr) {

405 iph->id = htons(inet_sk(sk)->inet_id);

406 inet_sk(sk)->net_id += segs;

407 } else {

408 iph->id = 0;

409 }

410 } else {

411 __ip_select_ident(net, iph, segs);

412 }

413 }

Fig. 1. Linux kernel IPID selection.

random value, chosen from a uniform distribution be-

tween 1 and the number of system ticks (typically mil-

liseconds) since the last packet transmission that used

the same counter. To summarize, three different side-

channels were discussed with respect to the 2014 patch

in response to Knockel and Crandall: two pre-patch and

one post-patch. Further improvements to the current

IPID generation strategy (e.g., a different distribution

for added noise) could help mitigate side-channels in this

data structure, but would not mitigate the side-channel

we present in this paper because we need only detect

that the resource is being used at all in our case.

3.3 IPv4 Do Not Fragment Behavior

While the above IPID behavior is used in most cases,

there exists a special case in the kernel’s handling

of TCP connections. As discussed previously in Sec-

tion 3.1, IPIDs are used to assist in reassembling frag-

mented IPv4 packets. However, if a machine is set to use

Path MTU Discovery, it will attempt to find the largest

packet size a given route can handle and attempt to

only send packets of this size or smaller. This is done to

try and avoid fragmenting packets during transmission.

PMTU Discovery changes how the Linux kernel chooses

IPIDs when sending TCP packets. When PMTU Dis-

covery is active the Linux kernel does not pick an IPID

from one of the 2048 counters, discussed in Section 3.2,

when using TCP and the Do Not Fragment flag is set.

Instead, the kernel picks from a per-socket IPID counter

unique to each TCP socket. Further analysis of this code

shows that this code path is followed by all TCP packets

sent by the kernel except SYN/ACKs and RST packets that

are not part of an active connection. These packets are

assigned an IPID value from one of the 2048 counters

as described previously. Figure 1 shows the IPID se-

lection behavior for Linux kernel version 4.16 [32]. The

ip_select_ident_segs function is eventually called to

assign an IPv4 packet an IPID value. On line 398 the

kernel checks to see if the Do Not Fragment flag should

be set. If not, the IPID is chosen from one of the 2048

counters based on its hash value in line 411. Otherwise,

the kernel will ensure that the socket exists and has a

known destination address in line 404 before using the

IPID counter from the current socket (line 405). For a

full source listing see the Linux kernel source code [32].

The attack we describe handles both cases when the Do

Not Fragment flag is and is not set.

3.4 RFC 5961

RFC 5961 was introduced in August 2010 as a method

for improving the TCP protocol’s resistance to blind

TCP RST attacks. It does so by adding the following

behavior to the standard TCP resetting algorithm:

1. Incoming RST packets are checked to see if they

match a valid TCP connection by verifying that the

source address and source port match an established

TCP connection in the machine.

2. Next, the sequence number is compared to the next

expected TCP sequence number and the next TCP

window.

– If the TCP sequence number exactly matches

the next expected TCP sequence number the

connection is reset as before.

– If the TCP sequence number does not exactly

match the next expected sequence number and

is not in the expected TCP window the RST is

ignored.

– If the sequence number does not exactly match

and is in the TCP expected window a challenge

ACK packet is sent to the other end host.

3. Then, the machine receiving the challenge ACK re-

sponds with a RST packet with a sequence num-

ber exactly matching the acknowledgment number

of the challenge ACK per normal TCP behavior.

4. Finally, the connection is reset since a RST packet

was received using the exact expected sequence

number.
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The additions proposed by RFC 5961 appear to address

the vulnerability of a blind TCP RST attack. An off-

path attacker who could previously brute force a valid

sequence number and cause a reset must now correctly

respond to a challenge ACK that they can not see. While

such an attacker could theoretically guess the correct se-

quence number to use as a challenge ACK response they

would need to guess from all 232 possible sequence num-

bers, an unlikely event.

In our tests and code review of the Linux ker-

nel’s implementation of RFC 5961, we verified that

Linux sends challenge ACKs in response to unsolicited

SYN/ACKs, as had been discussed by Cao et al. [7]. This

is relevant to our attack because it means we do not

need to account for sequence numbers in the spoofed

SYN/ACKs we send (although doing so would simply be

a matter of sending four sets of SYN/ACKs to ensure one

set has sequence numbers in the expected window).

4 Implementation

The attack for detecting active TCP connections re-

lies on using the Linux kernel’s IPID counter behavior

and the difference between per-connection TCP coun-

ters and other non TCP counters to detect a connection.

As discussed in Section 3.2 the Linux kernel uses 2048

IPID counters that are assigned based on the hash of

the IP addresses and protocol for a given connection.

In order to detect off-path TCP connections the at-

tack we describe requires the following primitives: First,

a reliable method an off-path attacker can use to trigger

off-path traffic that increments different IPID counters

when there is a TCP connection present on a given port

and when there is not a TCP connection. Second, a

method for counting IPID changes caused by off-path

traffic. Finally, a method for determining which counter

off-path traffic used based on the counted IPID changes.

We will discuss our implementations for all three prim-

itives below and describe how they can be combined in

the attack we describe.

4.1 Triggering Off-Path Traffic

To trigger the desired off-path traffic an attacker would

need to send packets to the targeted machine that cause

an off-path response, sent over TCP, which will use dif-

ferent counters when a TCP connection is present on

a given IP-Port 4-tuple and when a TCP connection

is not present. As described in Section 3.4, if a TCP

connection is present RST packets within the current se-

quence number window will trigger a challenge ACK from

the server. Out of sequence SYN/ACK packets also trigger

this behavior in the Linux kernel’s network stack. Our

implementation of the attack presented uses these out of

sequence, or “unsolicited”, SYN/ACK packets, using the

spoofed source IP address of the off-path client machine,

to cause the targeted server to generate off-path chal-

lenge ACK packets to be sent to the client machine. These

packets will use the TCP connection’s per-connection

IPID counter to populate the challenge ACK packet’s

IPID field. If there is no TCP connection present for

the IP-Port 4-tuple used by the “unsolicited” SYN/ACK,

the packet will trigger a RST packet in response. This RST

packet will populate the IPID field from one of the 2048

IPID counters, since there is no per-connection counter

to use because there is no TCP connection. By using

“unsolicited” SYN/ACKs in this way our implementation

has a method for triggering off-path TCP traffic that

will use different counters depending on the state of a

given IP-Port 4-tuple, i.e. whether or not a TCP con-

nection exists for a given 4-tuple.

4.2 Counting IPIDs

As discussed in Section 3.2 the Linux kernel uses a

mix of per-connection counters for established TCP

connections and 2048 IPID counters for TCP packets

sent outside established TCP connections. In order to

count packets our implementation of the attack relies

on counting packets sent outside an established TCP

connection. This can be accomplished via the use of

hash collisions in the hashing algorithm used to deter-

mine which of the 2048 IPID counters an outgoing TCP

packet uses when sent outside an established TCP con-

nection. Using this technique an off-path attacker can

ensure that the source IP address they are using pulls

from the same IPID counter that is used when send-

ing off-path traffic. This allows the attacker to count

the number of off-path packets sent by computing the

change in IPID between two probe packets, with the

difference being the number of packets sent.

4.2.1 Finding IPID Collisions

In order to find IPID collisions the attack uses a tech-

nique similar to that described by Zhang et al. [37],

though only applied to IPv4 addresses. As described in
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can be repeated to validate the accuracy of a potential

collision. Once we have found such a collision we can

then proceed with the attack. For our implementation

we chose the simplest method of sequentially scanning

for collisions between each possible client and attacker

IPv4 address pair.

As an example consider Figure 2a and Figure 2b.

In Figure 2a the attacker (M) and the client machine

(C) do not have hashes which collide and therefore they

do not use the same IPID counter. When the attacker

probes the server (S) the response has an IPID of 100.

Probes sent by the attacker, spoofing the IP address of

the client, use a different IPID counter and each probe

gives a different value than if a collision had occurred.

In Figure 2b we are using two IP addresses that will

cause a collision. In this case we can see the IPIDs use

the same counter and increase by one for each packet

sent to either the attacker or the client machine. The

attacker can tell the two cases apart by checking the

difference between its two probes. A difference of one

indicates that the attacker’s IP address does not collide

with the client’s and a difference of one plus the number

of spoofed SYN/ACKs sent indicates a collision. In both

cases the server is only responding with RST packets

which will always choose an IPID counter from one of

the 2048 counters as discussed in Section 3.2, avoiding

the per-socket counter described in Section 3.3.

4.2.2 Probability of Finding a Collision

To find a collision an IPv4 address is needed that collides

with the client’s IPv4 address on the server. Given that

the Linux kernel uses 2048 different IPID counters based

on a hash of connection parameters, any single IPv4

address has a probability of 1/2048 of its hash colliding

with the client’s. If the attacker instead uses a pool of

available IPv4 addresses then the probability of finding

a collision within this pool of addresses increases as the

size of pool does. The probability of finding an IPID

hash collision between a given client IPv4 address and k

attacker IPv4 addresses can be calculated as one minus

the probability that no collision is found:

Pr(X = k) = 1 − (1 − p)k (1)

where k is the number of IPv4 addresses used and p

is the probability of any single IPv4 address colliding,

1/2048.

Table 1 shows the probability of finding a collision

when using common CIDR network sizes.

Number of Addresses (k) Probability (p)

1 0.00048828

2 0.00097632

4 0.00195169

8 0.00389958

16 0.00778395

32 0.01550732

64 0.03077416

128 0.06060128

256 0.11753004

512 0.22124677

1024 0.39354340

2048 0.63221039

4096 0.86473080

8192 0.98170224

16384 0.99966519

32768 0.99999989

Table 1. Probability of a collision amongst k addresses

4.2.3 Example

As an example consider what happens when we check

a 4-tuple that represents an active TCP connection.

First, the attacker queries the current IPID value of

IPID counter used by the client machine, via an IPID

hash collision discovered previously. Then, when the at-

tacker sends “unsolicited”, spoofed SYN/ACK packets to

the server it will respond with a challenge ACK, sent to

the client. The challenge ACK sent will use the IPID value

from its per-socket counter as shown in Figure 3b. Since

this is a separate counter from the IPID counter used

for the RST packets sent in response to the attacker’s

probe SYN/ACKs it does not increase the IPID counter

used and the difference in IPID between the two RST

packets is one. As discussed previously if there is no ac-

tive connection on a given 4-tuple each spoofed SYN/ACK

packet will cause a RST to be sent to the client. Since

no connection exists each of these RST packets will use

the hash based IPID counter and each RST will incre-

ment this counter by one, as seen in Figure 3a. This

will cause the difference in IPID between the RST pack-

ets sent in response to the attacker’s probe packets to

be the number of spoofed packets sent plus one.

4.3 The Attack

The attack for detecting active TCP connections uses

the side-channel for using IPIDs to count the number of

packets sent to differentiate between active and inactive

TCP connection 4-tuples.
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For our specific implementation we chose to send eight

SYN/ACK packets for each individual port. We chose eight

packets as it provides a large enough number to account

for a small amount of noise caused by other packets us-

ing the same IPID counter while still being small enough

to send quickly to avoid the kernel adding its own noise

to the counter. The attack will work for a larger number

of packets, though the more packets that are sent the

longer the attack will take.

For each individual port scanned, we measure the

IPID difference before and after sending all eight

SYN/ACK packets. If the difference is less than the num-

ber of SYN/ACK probes sent to the potential 4-tuple mi-

nus one then we consider the port to be a potential

TCP connection. We chose this threshold to allow for a

small amount of noise from outside traffic to impact the

IPID without greatly impacting our implementation. If

the difference is greater than or equal to the number

of SYN/ACK probes sent to the potential 4-tuple, minus

one, we conclude that the 4-tuple does not represent a

valid TCP connection and move to scan the next pos-

sible 4-tuple. A difference of 1 indicates that some sort

of error or packet loss occurred.

5 Experimental Methodology

In testing the effectiveness of the attack we wanted to

answer three main questions:

1. How effective was the attack “in the wild”?

2. Was the attack robust to noise that might be present

“in the wild”?

3. How fast was the attack and is this fast enough to

be practically usable?

In order to answer these three questions we opened TCP

connections with popular web servers, that met the at-

tack’s required criteria, and attempted to use our attack

to detect these connections from a third “attacker” ma-

chine. The attack requires:

– A target server that is a Linux machine running

kernel version 4.0 or newer.

– Access to multiple IPv4 addresses to use as attacker

addresses.

Our experiment proceeded as follows:

1. Using the top 250 sites from the Alexa Top Global

Sites [1] we made a DNS A lookup for each and

recorded all IPv4 addresses returned by the lookup.

2. Each IPv4 address was then scanned to check if it

met the criteria for the attack.

3. For each IPv4 address that met the criteria for the

attack we generated all unique pairs of IPv4 ad-

dresses from a set of 242 IPv4 addresses on our

research network. These pairs were then used as

client and attacker IPv4 addresses along with a valid

server address to use when trying to find IPID col-

lisions in the next step.

4. Once we had generated all client and attacker IPv4

address pairs we scanned each server IPv4 address

that met our criteria to try and find IPID collisions

on the server between a given client and attacker

pair. Each pair that collides was then cached as a

collision pair to be used in the full attack.

5. We then carry out the attack both before and after

opening a TCP connection with each server IPv4

address. No data is sent to the server during the

attack except TCP keep-alive packets to ensure the

connection remains active during the course of the

attack.

6. Once the attack has finished we close the TCP con-

nection and log our results.

We chose to use the sites from the Alexa Top 250 as

these represent some of the most popular and highly

trafficked websites. Due to this these machines can be

viewed as a plausible worst case scenario for the attack.

This is because such large amounts of traffic increases

the likelihood that another connection’s IPID hash col-

lides with the client and the attacker’s IPID hash. This

traffic can be TCP traffic, such as RST packets, that use

one of the 2048 global counters to populate the IPID

field or non-TCP traffic (e.g., ICMP or UDP). In these

cases any such collisions will add additional noise to

the IPID counter, making precise changes more difficult

to detect. Such noise makes these sites an excellent set

to test the attack’s robustness when dealing with noisy

machines.

5.1 Determining TCP Ports to Target

When choosing ephemeral ports to use as client source

ports we wanted to choose a range that covered com-

mon operating system default values. TCP ports are

represented as 16-bit integers, with the first 1024 usu-

ally reserved for common services. This leaves 64,512

potential ephemeral ports that could possibly be used

as a client’s source port. However, many operating sys-

tems do not use this full range of ports by default. Linux
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uses the range [32, 768, 61, 000] as available ephemeral

TCP ports. The Internet Assigned Numbers Authority

(IANA) recommends that ephemeral ports be chosen

from the range [49, 152, 65, 535] [11]. Since Windows

Vista, Microsoft operating systems have used the IANA

range of ephemeral ports. An attacker would likely pick

one of these two ranges to try and maximize the num-

ber of client machine’s whose connections could be at-

tacked while also avoiding attempting to scan all pos-

sible ephemeral ports. For our experiments we chose

to use a hybrid range of [32, 768, 65, 535] as possible

ephemeral ports to cover both the IANA range and the

Linux range.

All client and measurement IPv4 addresses used

were unbound addresses chosen from a set of 242 IPv4

addresses on our measurement network. The measure-

ment machine we used responded to all packets sent

to these addresses. The measurement machine was an

Ubuntu Linux machine running Ubuntu 16.04 LTS with

Linux kernel version 4.4. In a real attack, the packet de-

lays, packet loss, and other characteristics of the Inter-

net between the measurement machine and the server

would have an effect on the attack, but for the client

the Internet characteristics between the client machine

and the server are not relevant to the attack, since the

client IP is simply kept as state on the server for an

open TCP connection from the attacker’s perspective.

Therefore our experimental setup is identical to a real

attack in terms of Internet traffic considerations.

5.2 Testing Against Persistent

Connections

In addition to testing the attack “in the wild” against

popular web servers, we also set out to test it against

privacy tools such as Tor which create persistent, long

lasting connections. Whereas tools such as VPNs that

use TCP create connections that persist for as long as

the user uses the VPN, Tor creates a new circuit every

10 minutes (MaxCircuitDirtiness defaults to this value).

For our mock targeted attack we assume that we are

the middle router chosen in a Tor circuit, and when-

ever a new circuit is created through us we carry out

the side-channel attack to see if a given target IP ad-

dress currently has a connection to the entry guard of

the circuit. Part of Tor’s security model is the assump-

tion that the middle onion router knows the entry guard

and exit node, but cannot gain information about either

endpoint of the socket connection tunneled through Tor.

This includes the client that connects to the entry guard

and the server they are connecting to, for demonstration

purposes we focus on the former though the latter can

also be inferred.

In order to avoid testing against circuits in the ac-

tual Tor network and potentially interfering with legit-

imate Tor traffic, we tested against Tor clients within

a small, virtual network. We also implemented some of

the possible improvements discussed in Section 7.2 to

see if they improve the attack’s accuracy.

This virtual network is constructed as follows:

– Four machines used to create a Tor network.

– A machine serving as a Tor directory server.

– A machine serving as a Tor guard node and the

entry node of the Tor circuit.

– A machine serving as an internal Tor relay node

and the attacker machine.

– A machine serving as the Tor exit node.

– One server machine which client machines connect

to through a created Tor circuit.

– Two client machines. In each round, a random client

connects to the server via Tor, while the second

client machine does not.

– One internal IP router node to route traffic be-

tween the various machines and simulate Internet-

like packet loss, variable delay, and reordering.

Each machine is assigned an IP address on a separate

/24 subnet, except our “attacker” machine which is as-

signed an IP address on a /18 subnet to ensure the at-

tacker can spoof a large enough number of IP addresses

to find an IPID hash collision on both client machines.

We add a latency of 70-75ms across the entire network

to simulate “real world” network delays and packet re-

ordering, as well as a randomized 5% packet loss.

In each round the attacker node will attempt to de-

termine whether or not a connection between a given

client machine and the guard node exists, starting when

it detects that a circuit has been created and via com-

munication with the guard node itself. The client ma-

chine using Tor initiates an SSH connection to the

server, through Tor. This SSH connection is closed

shortly after but the client maintains the Tor connection

to the circuit via the entry guard for 10 minutes (default

Tor behavior) before attempting to create a new Tor cir-

cuit.
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Number of Scans Connection No connection

True Positive False Negative False Positive True Negative False Positive

# % # % # % # % # %

2593 2194 84.61% 282 10.88% 117 4.51% 2452 94.56% 141 5.44%

Table 2. Overall accuracy of the attack.

6 Results

In this section we describe the results of our experiment

and discuss potential factors that could impact the at-

tack’s effectiveness. As described in Section 5 we chose

web sites from the Alexa Top 250 as the servers to de-

tect connections to. After performing DNS A lookups

for each host we obtained 464 unique IPv4 addresses to

use as server machines. Of these 464 IPv4 addresses we

found 182 (39.22%) that met our required behavior cri-

teria: a machine running a Linux kernel version 4.0 or

newer, that responded to “unsolicited” SYN/ACK pack-

ets with RST packets. Of these 182 IPv4 addresses we

were able to find valid IPID collisions between a pair of

our 242 measurement IPv4 addresses and 136 (74.73%)

server addresses. We carried out 2,593 total mock at-

tacks, over the course of 7 days, on active TCP connec-

tions between an IPv4 address from the Alexa Top 250

and a client IP address on our own network. Each scan

attempted to detect the presence of a TCP connection

before and during an active TCP connection.

6.1 Analysis of the Attack’s Accuracy

When describing our results we separate attacks where

no TCP connection existed from those where a TCP

connection does exist. Overall there are four possible

outcomes, depending on whether or not a connection

existed:

– True Positive: A connection exists and the attack

found the 4-tuple corresponding to the connection

correctly.

– True Negative: No connection exists and the attack

found no connection.

– False Positive: No connection exists and the attack

found a connection or a connection exists and the

attack found an incorrect 4-tuple for the connection.

– False Negative: A connection exists and the attack

failed to find the connection.

In cases where a connection did exist the attack was

able to detect the TCP connection 84.61% of the time

with a false positive rate of 4.51% and a false negative

rate of 10.88%. When no connection was present the

attack was able to correctly detect this 94.56% of the

time with a false positive rate of 5.44%. Table 2 shows

our overall results.

6.2 Analysis of the Attack’s Runtime

Performance

In addition to analyzing the accuracy of the attack we

also analyzed the performance of the attack when scan-

ning the standard Linux kernel’s ephemeral port range

for active TCP connections. If this scanning takes too

long to complete then it is possible that an attacker

would miss the existence of a short lived connection.

Using the same set of server IPv4 addresses and

IPID collisions used in the accuracy analysis detailed

in Section 6.1 we measured the time the attack took to

either find an active TCP connection or scan the cho-

sen ephemeral port range. On average the attack takes

75.81 seconds to find an active TCP connection. When

there is no connection the attack takes 135.59 seconds

on average to scan our ephemeral port range and con-

firm there is no connection. How fast the attack needs to

be depends on a lot of context that will vary across dif-

ferent potential types of attacks (e.g., Is the connection

repeated so that multiple attempts can be made? What

are the keepalive settings of the server and browser? Is

it an application that has persistent connections, such

as Tor?).

6.3 Accuracy Against Persistent

Connections

As discussed in Section 5.2 we also tested our attack

against the persistent connections created by Tor for

each circuit. These long lasting (10 minutes by default),



Detecting TCP/IP Connections via IPID Hash Collisions 322

persistent connections provide a longer window of time

and allow an attacker to implement strategies such as

those discussed in Section 7.2 to improve the attack’s

accuracy. For our tests we chose to implement the sim-

plest of these strategies, re-checking possible connection

4-tuples multiple times to verify potential positive re-

sults. We chose to check each potentially valid 4-tuple 8

times in total and accepted it as a 4-tuple representing

a connection if over half these tests returned a positive

result (i.e 5 or more of the 8 checks returned the same

4-tuple). Each of these re-checks does not scan the full

ephemeral port range but instead only scans those ports

for which a potential connection was detected. Since

these re-checks only check a handful of ports the added

time taken is typically quite small and can allow an at-

tacker to try and verify if a persistent connection exists

or not.

We find that re-checking potential, positive 4-tuples

combined with the increased connection life of long last-

ing, persistent Tor connections allows an attacker to im-

prove the attack’s accuracy in a simulated network. For

cases where a connection between a client machine and

the Tor entry node exists our tests show the attack has

an accuracy of 96% with a false negative rate of 4% and

no false positives. In cases where there is no connection

our simulated testing has a true negative rate of 100%

and no false positives. False negatives could be toler-

ated in a real attack of this kind because there is some

chance that any given circuit created by the victim will

not go through an attacker-controlled relay in the first

place, so the attack is already probabilistic.

Tor and VPNs are not the only contexts where TCP

connections may persist for a significant amount of time.

An increasingly common practice among web clients and

servers is to use TCP or HTTP keep-alives to main-

tain persistence of idle connections, to avoid the over-

head of starting new TCP connections for subsequent

requests. As one example, the Firefox browser maintains

idle connections for up to 115 seconds after completing

an HTTP request. These persistent connections increase

the number of situations where our attack could be used.

Our attack is general to TCP and can be applied beyond

plain web browsing traffic. Some applications such as

IRC create connections that persist for days. Our test-

ing shows that these persistent connections provide an

attacker with sufficient time to implement strategies to

better handle sources of error and improve the attack’s

accuracy.

7 Discussion

In this section we discuss the potential applicability of

the attack, factors that we noticed during our experi-

ments that affect the applicability of the attack, possi-

ble mitigations that could be taken against the attack,

and ethical considerations we made in designing our ex-

periments.

7.1 Applicability

As discussed previously this attack requires the use of

multiple attacker IPv4 addresses to increase the proba-

bility of an attacker finding a valid IPID hash collision

so that IPID values of attacker packets and client pack-

ets use the same IPID counter. In order to have a 50%

probability of finding a collision an attacker would need

to use approximately 1400 IPv4 addresses. To have a

90% or greater probability an attacker would need ap-

proximately 4700 IPv4 addresses. While access to this

many available IPv4 addresses is likely beyond the ca-

pabilities of a simple attacker it is within the realm of

availability for a large botnet or nation-state attacker.

Previous work studying the Great Cannon [24] and the

Great Firewall of China’s attempts to actively probe

Tor bridges [15] shows that some nation-states likely

already possess the ability to spoof thousands of IPv4

addresses, 13,183 and 16,083 respectively, most of which

came from the same /16 subnet. If similar numbers of

IPv4 addresses were used to implement the attack we

describe in this paper, an attacker would have a greater

than 99% probability of finding a valid collision that

could be used to detect an active TCP connection with

a chosen, vulnerable Linux machine.

We assume that the attacker has some reason to

suspect that the victim machine is making a connection

to a given server, and that this is likely the case. The

base rate fallacy [5] would apply if the likelihood that

the connection actually exists is relatively low. This de-

pends on the overall goals of the attacker and context

of the attack, which may also mitigate the effects of the

base rate fallacy. For example, if an attacker’s goal is

to know if a given client is connected to the guard node

associated with a Tor circuit, a higher false positive rate

may be tolerable because this is simply another lead to

follow in a broader and more thorough investigation.
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7.2 Sources of Error

During the course of our experiments we noticed three

main causes of errors that impacted the effectiveness

of the attack. The first cause was noise causing larger

than expected IPID increases. The most likely cause of

this behavior is additional machines connecting to the

server whose IPv4 addresses hash to use the same IPID

counter as an attacker IPv4 address. Each packet these

additional connections send increases the IPID counter

in addition to the increases caused by the attack. This

additional increase can cause the IPID counter an at-

tacker is using to increase beyond the number of probe

packets expected making it appear that no challenge ACK

was sent when scanning a given 4-tuple as described in

Section 4. One method for accounting for this would be

to try to account for the added noise in the IPID counter

by modeling the noise. Ensafi et al. [15, 16] used ARMA

modeling to account for noise affecting the global IPID

counters. Pearce et al. [26] accounted for noisy IPID

counters by using Sequential Hypothesis Testing, while

ONIS [37] modeled noise and accounted for it by using

the Akaike information criterion. The attack we have

described does not attempt to handle detected cases of

noise; instead we leave this possibility for future work.

The second cause of errors we noticed is that some

IPv4 addresses we used as servers would change the

IPID counter being used after successfully finding an

IPID hash collision. Since we cached all located IPID

collisions as described in Section 4 this caused any sub-

sequent attempts using the cached collision to fail. An

attacker using a similar system of caching known colli-

sions would be forced to try to find another valid col-

lision before continuing their attack. We noticed these

changes occurring on the order of hours and not min-

utes meaning that single attacks or those not using a

similar system of caching collisions are unlikely to be

affected. Performing an additional test to ensure the

chosen collision is still valid before launching the full

attack mitigates this source of error.

There are two likely explanations for this changing

collision behavior. The first is that the target machine

was restarted. As discussed previously in Section 3 a

random value is included as part of the IPID hash to

prevent the possibility of precalculated collisions. This

value is chosen when a machine boots and remains un-

changed while the machine is still running. Any pre-

computed collisions that use a server that restarts will

become invalid whenever that server restarts. The sec-

ond possibility is that these IPv4 addresses represent

multiple machines assigned the same IPv4 address via

some type of load balancing or address translation pro-

tocol. If this is the case when an attacker first finds a

collision it is valid for one of the set of machines assigned

a given IPv4 address. However, if the attacker later at-

tempts to reuse the same collision the load balancing

or address translation system could send the attacker’s

traffic and the client’s traffic to different machines. This

would result in the collision no longer being valid and

all subsequent attacks would fail. Popular web sites are

likely to use some type of load balancing technique to

improve overall performance and an attacker would need

to detect whenever this case has occurred and appropri-

ately handle when it has. We leave the development of

such a technique to future work, and note that prior

TCP/IP side channel attacks (e.g., Cao et al. [7] and

Knockel and Crandall [21]) are also affected by layer 4

load balancing, making it an interesting open problem

in general.

The third source of error we noticed was the largest

cause of false positives in our data. These errors were

caused by packets arriving out of order and the server

responding to the attacker’s second probe packet before

all the spoofed packets. Recall the attack as described

in Section 4. At two points during the attack we send

N spoofed packets using a given spoofed 4-tuple while

sending probe packets from the attacker IPv4 address

before and after sending the spoofed packets. Our imple-

mentation assumes that responses to all N packets are

sent before the response to the second attacker probe.

In the event that these packets arrive out of order the

second attacker probe will have an IPID value that is

somewhere in the middle of the IPID values given to

packets sent in response to the N probes. This results in

a given probe appearing to cause less packets to be sent

making it seem like the probe triggered the packets that

used the per-connection IPID counter. This causes the

attack to either detect a connection where none existed

or to detect a connection on an incorrect port. Given

our low false positive rate of less than 5% this does not

occur frequently and could be mitigated by rerunning

the attack multiple times. We leave the development of

techniques to detect and better handle packet reorder-

ing to future work.

7.3 Mitigations

There are a number of possible mitigations the Linux

kernel could use to try and prevent this attack. The

immediate place to consider mitigations is the Linux

kernel’s IPID behavior.
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The kernel could change the IPID counter behav-

ior it uses to try to remove any information flows that

could be used as a side-channel. However there is no

obvious choice for the behavior that should be chosen.

If the kernel were to use per-destination IPID counters,

as it did previously, then the kernel would again be vul-

nerable to side-channel attacks such as those discussed

by Knockel and Crandall [21]. Moving to any type of

global IPID counter is also a poor choice as it would re-

move the need for an attacker to have hundreds of IPv4

addresses available to find IPID hash collisions, though

it would increase the amount of noise present for active

machines.

One possibility is that the Linux kernel could use

an IPID of zero for RST packets that are not part of an

active TCP connection. RST packets should not contain

any data and as a result should never be fragmented.

Using an IPID of zero for such packets would make it

impossible for the attack we have described to determine

if off-path packets have been transmitted, removing the

attack’s ability to tell whether the traffic used a per-

connection counter or one of the 2048 global counters.

This solution would mitigate the attack we have de-

scribed, though it does still allow an off-path attacker

to count non-TCP packets via IPID hash counter colli-

sions.

Another possibility is to use random IPID values

for each outgoing packet. This is the approach taken by

some versions of BSD-based operating systems, includ-

ing Mac OSX. Using this approach, for each packet that

is sent a random value is generated and used as the IPID

field. This removes any ability for an off-path attacker

to count IPID differences, assuming the random num-

ber generation scheme is sufficiently difficult to predict.

However, this approach adds additional overhead com-

puting random values to each outgoing packet, which

may not be desirable.

7.4 Ethical Considerations

In order to avoid potentially exhausting resources on the

server machines we used in our experiment we strove to

follow best practices. We only initiated one TCP con-

nection at a time with a given server and all TCP con-

nections were completed to avoid taking up resources

with “half-open” TCP connections. Once we had fin-

ished a given scan we closed and reset each connection

immediately, to avoid using up server resources. All of

our probe packets are SYN/ACK packets, which are im-

mediately reset by the server. At no point do we test

the attack described on any TCP connection other than

those we have initiated ourselves. Via reverse DNS our

client and measurement machine IPs pointed to a web-

site that explained the nature of our study and gave

contact information for network administrators to opt

out of our probes, and we have arranged for all abuse

complaints for our research network to be forwarded di-

rectly to us. We received no opt-out requests or abuse

complaints at any time during this study.

7.4.1 Disclosure

We disclosed the side-channels used in the attack to the

Linux kernel developers on August 22, 2018. After dis-

cussing the attack and possible mitigations, the Linux

developers released a patch that mitigated the attack

on September 11, 2018. The chosen mitigation strategy

was to have the Linux kernel use an IPID of zero for all

TCP RST packets sent outside an established TCP con-

nection. As we discussed previously this removes the

side-channel which allows an off-path attacker to deter-

mine whether off-path TCP traffic was using one of the

2048 global IPID counters or a per-connection counter

and detect the presence of a TCP connection. As result,

Linux kernel versions 4.18 and newer are no longer vul-

nerable to the attack we have described. However, the

underlying side channel still remains for other protocols

and could be used to attack user privacy in applications

that are, e.g., UDP-based (such as DNS).

8 Related Works

One of the first uses of network side-channels as a

measurement technique was the original Idle Scan pro-

posed by Antirez [4] to scan for open ports on a tar-

get machine. Morbitzer [25] proposed a technique for

an IPv6 Idle Scan. Ensafi et al. [17] proposed another

side-channel using the SYN-backlog for the same pur-

pose. Subsequent work by Ensafi at al. [16] combined

the two side-channels to provide a technique for mea-

suring intentional blocking of ports by firewalls. Alexan-

der and Crandall [2] use the SYN-backlog side-channel

for off-path network measurements of packet round-trip

time while Zhang et al. [35] improved on their technique.

Zhang et al. also used side-channels to detect machines

hidden behind firewalls [36] and describe ONIS [37] for

port scanning. Chen et al. [9] showed how the IPID field

could be used as a side-channel to measure a multitude
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of information about a server including amount of inter-

nal traffic generated and the number of machines used

for load-balancing. Bellovin describes a technique for

counting the number of hosts behind a NAT [6] and

Kohno et al. [22] made use of IPIDs to fingerprint re-

mote devices. None of these works can be used to infer

the existence of a TCP/IP connection off-path.

Detecting the presence of an active TCP/IP con-

nection is often the first step in TCP reset attacks or

connection hijacking, such as those described by Wat-

son [34]. Knockel and Crandall [21] discuss a technique

for inferring the presence of active IPv4 connections on

Linux machines using the IPID field and IP fragmenta-

tion reassembly behavior. Qian et al. [28, 29] use fire-

wall based network side-channels to infer TCP sequence

numbers and perform off-path TCP/IP connection hi-

jacking. Cao et al. [7, 8] use the Linux kernel’s initial,

unpatched challenge ACK behavior to implement an off-

path TCP reset attack and a connection hijacking at-

tack. Quach et al. [30] later scanned the Internet to dis-

cover how quickly popular web servers patched the vul-

nerability discovered by Cao et al. Chen and Qian [10]

describe a side-channel present in the IEEE 802.11 pro-

tocol that allows for off-path TCP injection attacks. Of

all of these side-channel attacks, only two (Knockel and

Crandall [21] and Cao et al. [7, 8]) do not require non-

privileged malicious code running on the victim client.

As discussed previously, both of these works exhaust a

global resource.

IPIDs and IP fragmentation have been used as side-

channels in many of the techniques described by Gilad

and Herzberg. They explored the use of global IPID

counters, fake congestion events, and packet processing

delays as side-channels to infer the presence of traffic be-

tween hosts on the Tor network [18]. They also explored

the use of IP fragmentation to perform off-path intercep-

tion and denial-of-service attacks on machines behind a

NAT or network tunnel [20]. A part of their attack in-

volves inferring the Linux per-destination IPID counter.

This technique requires the use of an agent running on

either the client machine or another machine behind

the NAT or tunnel running attacker code. The attack

we describe does not require the use of an agent and

can be done remotely and completely off-path. Gilad

and Herzberg additionally discussed attacks which com-

bined agents and TCP/IP side-channels to attack the

Same Origin Policy and carry out TCP injections [19].

All of the work by Gilad and Herzberg requires the use

of an agent or attacker machine behind the same NAT

as the victim.

To the best of our knowledge, our work is the first

purely off-path TCP/IP side channel attack that can

infer the existence of a connection without exhausting

a global resource. This informs efforts to protect ker-

nel network stacks against unknown side-channels in

two ways. First, enumerating shared, global resources

(such as rate limits, buffers, and caches) and then eval-

uating each in isolation will not reveal all TCP/IP

side-channels. Rather, efforts to reason about potential

undiscovered side-channels for the existence of a con-

nection should consider all code paths that differ when

a connection exists. And second, the fact that Linux’s

IPID behavior for unsolicited packets had to be changed

in response to the vulnerability presented in this pa-

per is significant in that this route was chosen because

strategies to randomize resource usage (such as the ran-

domized global challenge ACK rate limit in response

to Cao et al., or the uniformly distributed noise added

to IPIDs combined with the removal of per-destination

IPID counters in response to Knockel and Crandall) are

not effective for attacks that do not exhaust any global

resource. The Linux kernel’s response to our vulnerabil-

ity disclosure, which was to set IPIDs to zero for RST

packets, amounted to not using the resource in question

(IPID counters) at all. What if a TCP/IP side-channel

is discovered that, like the one presented in this paper,

does not exhaust any global resource, but where simply

not using a resource is not an option as it was in this

case?

9 Conclusion

We have presented a novel off-path attack that can de-

tect the presence of an active TCP connection between

a remote Linux server and an arbitrary client using

side-channels present in the Linux kernel. The attack

leverages side-channels in the kernel’s implementation

of shared and per-connection counters. This attack is a

purely off-path attack that does not require access to

any packets sent between the client and the server. All

that is required to reliably use the attack is access to

multiple IPv4 addresses for the measurement, that the

server machine be running a Linux kernel of version 4.0

or higher, and that the server responds to unsolicited

SYN/ACK packets with RST packets.

We have provided an evaluation of the attack “in the

wild” and discussed its effectiveness and performance.

We have shown that the attack is accurate and can be

run quickly enough to detect active connections that
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persist for an average of 76 seconds or longer. In ad-

dition we have discussed the potential applicability of

the attack, sources of error that would affect its ap-

plicability, and possible mitigations against the attack.

Finally, we have discussed what this attack can tell us

about yet undiscovered TCP/IP side channels that past

attacks could not.
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A Finding an IPID collision

One of the first steps in the attack is to find an IPv4

addresses whose IPID counter hash collides with the

client’s IPID counter hash on the server. Our imple-

mentation uses a technique similar to that used by

ONIS [37]. This is the most time intensive portion of

the attack. In cases where a collision was found our

implementation took on average 1,669.65 seconds, i.e.

27 minutes and 49 seconds, to find the collision. The

fastest that our implementation found a collision was

1.73 seconds and the longest time to find a collision was

8,453.34 seconds, i.e. 2 hours, 20 minutes, and 53 sec-

onds. Since each attempt to find a collision requires one

round trip time per attacker IPID probe these results

are heavily influenced by the round trip time between

3394 static void tcp_send_challenge_ack(...) {

...

3404 if (__tcp_oow_rate_limited(net,

LINUX_MIB_TCPACKSKIPPEDCHALLENGE,

&tp->last_oow_ack_time))

3405 return;

...

3419 count = READ_ONCE(challenge_count);

3420 if (count > 0) {

3421 WRITE_ONCE(challenge_count, count - 1);

3422 NET_INC_STATS(net,

LINUX_MIB_TCPCHALLENGEACK);

3423 tcp_send_ack(sk);

3424 }

3425 }

Fig. 4. Linux kernel challenge ACK behavior

the attacker and the server. As a result collisions with

shorter round trip times between the attacker and the

server required less time than those with longer round

trip times. As discussed previously our implementation

scans for collisions and caches any that are found before

checking for TCP connections and reuses these cached

collisions to avoid having to rediscover collisions every

time the attack is run. In addition our implementation

uses a naive, sequential scan of all possible IP pairs that

could result in a hash collision. A more advanced, paral-

lel scan or other less naive implementations could speed

up the process of finding collisions and decrease the time

needed.

B The attack when the Do Not

Fragment Flag is not set

Starting with version 4.0, the Linux kernel began rate

limiting duplicate ACK packets to reduce resource con-

sumption in cases where many duplicate ACK packets

could be caused by a remote host. The attack takes ad-

vantage of this rate limit when applied to challenge ACKs

when the Do Not Fragment flag for an outgoing IPv4

packet is not set. When the Linux kernel needs to send

a challenge ACK packet it first checks to see if it was al-

ready reached its duplicate ACK rate limit as seen in line

3404 of Figure 4. The default value for this rate limit is

one duplicate challenge ACK packet sent every one half
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